The experimental research of GFRPand BFRP operation under compression

Vestnik MGSU 1/2014
  • Lapshinov Andrey Evgenievich - Moscow State University of Civil Engineering (MGSU) postgraduate student, assistant, Department of Reinforced Concrete Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe schosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 52-57

In the foreign countries there are not only design guidelines but also standards for testing FRP materials. These codes do not recommend using FRP bars in compressive members, such as columns. But the compressive strength shouldn’t be neglected according to those design codes. In our country the standards for FRP testing and design codes are just in the process of development.This paper contains the results of a compression testing of GFRP and BFRP with different configurations. The proposed height of the specimen was 1d, 3d and 5d. The results of the tests and failure mechanisms of the samples are discussed. The author also gives strain distribution in dependence with the specimen type. The conclusions and proposals for the use of FRP reinforcement in compression are offered. One of the main conclusions is that with the height increase the compressive strength also increases, while the strain decreases.Basing on the survey results the ratio of tensile strength to compressive strength and the ratio of compressive elasticity modulus to tensile elasticity modulus are given.

DOI: 10.22227/1997-0935.2014.1.52-57

References
  1. ACI 440.1R—06. Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars. ACI Committee 440, American Concrete Institute, Farmington Hills, Mich, 2006, 44 p.
  2. ACI 440.3R—04. Guide for Test Methods for Fiber Reinforced Polymers (FRP) for Reinforcing and Strengthening Concrete Structures. ACI Committee 440, American Concrete Institute, Farmington Hills, Mich, 2004, 40 p.
  3. CNR-DT 203/2006, 2006. Istruzioni per la Progettazione, l’Esecuzione e il Controllo di Strutture di Calcestruzzo armato con Barre di Materiale Composito Fibrorinforzato (in Italian).
  4. CAN/CSA-S6-02, 2002. Design and Construction of Building Components with Fibre-Reinforced Polymers, CAN/CSA S806-02, Canadian Standards Association, Rexdale, Ontario, Canada, 177 p.
  5. Fib Bulletin #40. FRP Reinforcement in RC Structures. 147 p.
  6. ASTM D6641 / D6641M—09. Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture.
  7. ASTM D3410 / D3410M—03(2008). Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading.
  8. ASTM D695—10. Standard Test Method for Compressive Properties of Rigid Plastics.
  9. GOST 4651—82 (ST SEV 2896—81). Plastmassy. Metod ispytaniya na szhatie [Russian State Standard 4651—82 (ST SEV 2896—81). Plastic. Compression Test Method].
  10. Blaznov A.N., Savin V.F., Volkov Yu.P., Tikhonov V.B. Issledovanie prochnosti i ustoychivosti odnonapravlennykh stekloplastikovykh sterzhney pri osevom szhatii [Examining Strength and Stability of Monodirectional Glass Fiber Rods under Axial Compression]. Mekhanika kompozitsionnykh materialov i konstruktsiy]. 2007, vol.13, no. 3, pp. 426—440.

Download

ENERGY METHOD OF ANALYSIS OF STABILITY OF COMPRESSED RODS WITH REGARD FOR CREEPING

Vestnik MGSU 1/2013
  • Chepurnenko Anton Sergeevich - Don State Technical University (DGTU) Candidate of Engineering Science, teaching assistant of the strength of materials department, Don State Technical University (DGTU), 162 Sotsialisticheskaya str., Rostov-on-Don, 344022; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Andreev Vladimir Igorevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, corresponding member of Russian Academy of Architecture and Construction Sciences, chair, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Yazyev Batyr Meretovich - Rostov State University of Civil Engineering (RSUCE) Doctor of Technical Sciences, Professor, Chair, Depart- ment of Strength of Materials; +7 (863) 201-91-09, Rostov State University of Civil Engineering (RSUCE), 162 Sotsialisticheskaya St., Rostov-on-Don, 344022, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 101-108

The problem of stability of polymer rods with account for creeping was resolved using the energy method customized by Tymoshenko and Ritz. Possible patterns of displacements were provided in the form of trigonometric series with undetermined coefficients. The principle of the minimal total potential energy of the system was taken as the basis. According to this principle, the form in which the potential energy has a minimum value is implemented in all possible patterns of deformation occurring due to the loss of stability. The energy method makes it possible to replace the solution of complex differential equations by the solution of simple linear algebraic equations. The result was obtained numerically using MatLab software applicable to different equations describing deformations and stresses caused by the exposure to creeping. The problem was solved for low and high density polyethylene. The equation of Maxwell and Thompson was

DOI: 10.22227/1997-0935.2013.1.101-108

References
  1. Aleksandrov A.V. Soprotivlenie materialov. Osnovy teorii uprugosti i plastichnosti [Strength of Materials. Fundamentals of the Theory of Elasticity and Plasticity]. Moscow, Vyssh. shk. publ., 2002, 400 p.
  2. Klimenko E.S., Amineva E.H., Litvinov S.V., Yazyev S.B., Kulinich I.I. Ustoychivost’ szhatykh neodnorodnykh sterzhney s uchetom fi zicheskoy nelineynosti materiala [Stability of Compressed Heterogeneous Rods with Account for the Physical Nonlinearity of the Material]. Rostov-on-Don, Rostov State University of Civil Engineering Publ., 2012, 77 p.
  3. Alfutov N.A. Osnovy rascheta na ustoychivost’ uprugikh system [Fundamentals of Stability Analysis of Elastic Systems]. Moscow, Mashinostroenie Publ., 1991, 336 p.
  4. Vol’mir A.S. Ustoychivost’ deformiruemykh system [Stability of Deformable Systems]. Moscow, Nauka Publ., 1975, 984 p.
  5. Timoshenko S.P. Ustoychivost’ uprugikh system [Stability of Elastic Systems]. Moscow, Gostekhizdat Publ., 1946.
  6. Andreev V.I. Nekotorye zadachi i metody mekhaniki neodnorodnykh tel [Some Problems and Methods of Mechanics of Heterogeneous Bodies]. Moscow, ASV Pub., 2002, 288 p.
  7. Turusov R.A. Temperaturnye napryazheniya i relaksatsionnye yavleniya v osesimmetrichnykh zadachakh mekhaniki zhestkikh polimerov [Thermal Stresses and Relaxation Phenomena in Axisymmetric Problems of Mechanics of Rigid Polymers]. Moscow, 1970, 104 p.
  8. Belous P.A. Ustoychivost’ polimernogo sterzhnya pri polzuchesti s uchetom nachal’noy krivizny [Stability of a Polymer Rod Exposed to Creeping with Regard for Its Initial Curvature]. Trudy Odesskogo politekhnicheskogo instituta [Works of Odessa Polytechnic Institute]. 2001, no. 2, pp. 43—46.
  9. Gurevich G.I. Deformiruemost’ sred i rasprostranenie seysmicheskikh voln [Deformability of Media and Propagation of Seismic Waves]. Moscow, Nauka Publ., 1974, 482 p.
  10. Gol’dman A.Ya. Prochnost’ konstruktsionnykh plastmass [Structural Plastic Strength]. Leningrad, Mashinostroenie Publ., 1979, 320 p.

Download

Solving the stability problem of compressed-bendablepinned rigid rods of variable rigidity

Vestnik MGSU 5/2015
  • Blyumin Semen L'vovich - Lipetsk State Technical University (LGTU) Doctor of Physical and Math- ematical Sciences, Professor, Department of Applied Mathematics, Lipetsk State Technical University (LGTU), 30 Moskovskaya str., Lipetsk, 398600, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Zverev Vitaliy Valentinovich - Lipetsk State Technical University (LGTU) Doctor of Technical Sciences, Professor, chair, De- partment of Metal Structures, Lipetsk State Technical University (LGTU), 30 Moskovskaya str., Lipetsk, 398600, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Sotnikova Irina Vladimirovna - Lipetsk State Technical University (LGTU) postgraduate student, Department of Metal Structures, Lipetsk State Technical University (LGTU), 30 Moskovskaya str., Lipetsk, 398600, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Sysoev Anton Sergeevich - Lipetsk State Technical University (LGTU) Candidate of Technical Sciences, Assistant Lecturer, Department of Applied Mathematics, Lipetsk State Technical University (LGTU), 30 Moskovskaya str., Lipetsk, 398600, Russian Federation; +7 (4742) 32-80-51; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 18-27

The problem connected with the stability of compressed-bendable rigid rods of variable rigidity (with the reduced rigidity in the centre) is formulated and solved. The system of transcendent equations with roots for critical load for a rod is founded out.

DOI: 10.22227/1997-0935.2015.5.18-27

References
  1. Ayrumyan E.L., Kamenshchikov N.I., Liplenko M.A. Perspektivy LSTK v Rossii [Prospects of Steel Frames in Russia]. StroyPROFI [Construction Prof]. 2013, no. 10, pp. 12—17. (In Russian)
  2. Zverev V.V., Zhidkov K.E., Semenov A.S., Sotnikova I.V. Eksperimental'nye issledovaniya ramnykh konstruktsiy iz kholodnognutykh profiley povyshennoy zhestkosti [Experimental Studies of Frame Constructions Produced of Cold-Formed Profiles of Increased Rigidity]. Nauchnyy vestnik Voronezhskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. Stroitel'stvo i arkhitektura [Bulletin of Voronezh State University of Architecture and Civil Engineering. Construction and Architecture]. 2011, no. 4 (24), pp. 20—25. (In Russian)
  3. Ayrumyan E.L. Rekomendatsii po raschetu stal'nykh konstruktsiy iz tonkostennykh gnutykh profiley [Recommendations for Calculating Steel Constructions Produced of Thin-Walled Roll-Formed Profiles]. StroyPROFIl' [Construction Profile]. 2009, no. 8 (78), pp. 12—14. (In Russian)
  4. Ayrumyan E.L. Osobennosti rascheta stal'nykh konstruktsiy iz tonkostennykh gnutykh profiley [Features of Calculation for Steel Thin-Walled Roll-Formed Shapes]. Montazhnye i spetsial'nye raboty v stroitel'stve [Installation and Special Works in Construction]. 2008, no. 3, pp. 2—7. (In Russian)
  5. Luza G., Robra J. Design of Z-purlins: Part 1. Basics and Cross-Section Values Ac-сording to EN 1993-1-3. Proceedings of the 5th European Conference on Steel and Composite Structures EUROSTEEL. Graz, Austria, 2008, vol. A, pp. 129—134.
  6. Luza G., Robra J. Design of Z-purlins: Part 2. Design Methods Given in Eurocode EN 1993-1-3. Proceedings of the 5th European Conference on Steel and Composite Structures EUROSTEEL. Graz, Austria, 2008, vol. A, pp. 135—140.
  7. Smaznov D.N. Ustoychivost' pri szhatii sostavnykh kolonn, vypolnennykh iz profiley iz vysokoprochnoy stali [Stability in Compression of Composite Columns Made of High-Strength Steel Profiles]. Inzhenerno-stroitel'nyy zhurnal [Magazine of Civil Engineering]. 2009, no. 3, pp. 42—49. (In Russian)
  8. Yu W.-W., LaBoube R.A. Cold-Formed Steel Design. 4th Edition, John Wiley & Sons, 2010, 512 p.
  9. Timoshenko S.P., Grigolyuk E.I. Ustoychivost' sterzhney, plastin i obolochek [Stability of Rods, Plates and Shells]. Moscow, Nauka Publ., 1971, 807 p. (In Russian)
  10. Vol'mir A.S. Ustoychivost' uprugikh system [Stability of Elastic Systems]. Moscow, Fizmatlit Publ., 1972, 879 p. (In Russian)
  11. Galkin A.V., Sysoev A.S., Sotniko-va I.V. Zadacha ustoychivosti szhato-izgibaemykh sterzhney so stupenchatym izmeneniem zhestkosti [The Resistance Problem of Compressed-Bent Shanks with Step Inflexibility Change]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2015, no. 2, pp. 38—44. (In Russian)
  12. Gorbachev V.I., Moskalenko O.B. Ustoychivost' sterzhney s peremennoy zhestkost'yu pri szhatii raspredelennoy nagruzkoy [Stability of the Rods with Variable Inflexibility While Pressing with Distributed Load]. Vestnik Moskovskogo universitetata. Seriya 1, Matematika. Mekhanika [Bulletin of the Moscow State University. Series 1. Mathematics, Mechanics]. 2012, no. 1, pp. 41—47. (In Russian)
  13. Temis Yu.M., Fedorov I.M. Sravnenie metodov analiza ustoychivosti sterzhney peremennogo secheniya pri nekonservativnom nagruzhenii [Comparing the Analysis Methods of the Stability of Rods with Variable Cut Set at Nonconservative Loading]. Problemy prochnosti i plastichnosti [Problems of Strength and Plasticity]. 2006, no. 68, pp. 95—106. (In Russian)
  14. Gukova M.I., Simon N.Yu., Svyatoshenko A.E. Vychislenie raschetnykh dlin szhatykh sterzhney s uchetom ikh sovmestnoy raboty [Calculation of the Lengths of Compressed Rods with Account for their Joint Action]. Stroitel'naya mekhanika i raschet sooruzheniy [Construction Mechanics and Calculation of Structures]. 2012, no. 3, pp. 43—47. (In Russian)
  15. Soldatov A.Yu., Lebedev V.L., Semenov V.A. Analiz ustoychivosti stal'nykh sterzhnevykh sistem s uchetom nelineynoy diagrammy deformirovaniya materiala [Stability Analysis of Steel Rod Systems Taking into Account the Non-Linear Diagram of Material Deformation]. Stroitel'naya mekhanika i raschet sooruzheniy [Construction Mechanics and Calculation of Structures]. 2012, no. 2, pp. 48—52. (In Russian)
  16. Soldatov A.Yu., Lebedev V.L., Semenov V.A. Analiz ustoychivosti stroitel'nykh konstruktsiy s uchetom fizicheskoy nelineynosti metodom konechnykh elementov [Stability Analysis of Building Structures Taking into Account the Physical Non-Linearity Using Finite Element Method]. Stroitel'naya mekhanika i raschet sooruzheniy [Construction Mechanics and Calculation of Structures]. 2011, no. 6, pp. 60—65. (In Russian)
  17. Krutiy Yu.S. Zadacha Eylera v sluchae nepreryvnoy poperechnoy zhestkosti (prodolzhenie) [Euler Problem in Case of Constant Transverse Inflexibility (Continuation)]. Stroitel'naya mekhanika i raschet sooruzheniy [Construction Mechanics and Calculation of Structures]. 2011, no. 2, pp. 27—33. (In Russian)
  18. Slivker V.I. Ustoychivost' sterzhnya pod deystviem szhimayushchey sily s fiksirovannoy liniey deystviya [Stability of a Rod under the Influence of Comprehensive Load with Fixed Force Line]. Stroitel'naya mekhanika i raschet sooruzheniy [Construction Mechanics and Calculation of Structures]. 2011, no. 2, pp. 34—36. (In Russian)
  19. Nasonkin V.D. Predel'naya nagruzka dlya szhatykh sterzhney, deformiruemykh za predelom uprugosti [Ultimate Load for Compressed Rods Deformable outside the Limit of Elasticity]. Stroitel'naya mekhanika i raschet sooruzheniy [Construction Mechanics and Calculation of Structures]. 2007, no. 2, pp. 24—28. (In Russian)
  20. Potapov A.V. Ustoychivost' stal'nykh sterzhney otkrytogo profilya s uchetom real'noy raboty materiala [Stability of Steel Rods with Open Profile Taking into Account the Real Operation of the Material]. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta [Bulletin of Kazan State University of Architecture and Engineering]. 2009, no. 1 (11), pp. 112—115. (In Russian)

Download

GENERATION OF A COMPOSITE GLASS-METAL ROD: PRACTICAL RESULTS

Vestnik MGSU 7/2012
  • Gridasova Ekaterina Alexandrovna - Far Eastern Federal University (FEFU) Assistant Lecturer, Department of Mechanics and Mathematical Modeling, Far Eastern Federal University (FEFU), 8 Sukhanova St., Vladivostok, 690950, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Lyubimova Olga Nikolaevna - Far Eastern Federal University (FEFU) Associated Professor, Department of Mechanics and Mathematical Modeling, Far Eastern Federal University (FEFU), Sukhanova St., Vladivostok, 690950, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 136 - 140

Glass has a high compressive strength and low impact strength. The strength of glass in compression is a lot higher than the strength of glass in tension, and it varies within the range of 500-1,250 MPa. Whenever the glass is in compression, it can compete with the properties of metal in terms of its strength. The tensile strength of glass under tension is 30-50 MPa. The reason for that is the fact that the strength of glass is strongly dependent on the state of its surface.
Methods of increasing the strength of glass have been the subject of research projects implemented at Far Eastern Federal University. The objective is to apply compressive stresses that would prevent any defects in the surface layer and harden the surface to improve the glass resistance to mechanical stresses and isolate it from the environment.
Creation of a composite rod made of glass grade C49-1 (3С5Na) and steel E235C (ISO standard) manufactured through the employment of diffusion bonding represents a practical result of the research. Its analysis has proven the presence of full contact, absence of cracks and poor penetration alongside the welding zone. Microscopy methods of analysis have demonstrated the presence of the transition zone in the points of interface of materials. The results of the spectral analysis prove the penetration of Fe-cations into the glass down to the depth of 30 microns. The chemical analysis of the zone of diffusion proves that the crystalline structure, or fayalite (Fe2SiO4), is formed in the glass. The rod strength analysis has demonstrated its high compressive

DOI: 10.22227/1997-0935.2012.7.136 - 140

References
  1. Nikonorov N.V., Evstrop’ev S.K. Opticheskoe materialovedenie: osnovy prochnosti opticheskogo stekla [Optical Material Engineering: Fundamentals of Optical Glass Strength]. St.Petersburg. SPbGU ITMO Publ., 2009, 102 p.
  2. Pikul’ V.V Sposob izgotovleniya tsilindricheskoy obolochki prochnogo korpusa podvodnogo apparata [Method of Manufacturing of the Cylinder-shaped Shell of a High-Strength Hull of a Submersible Craft]. RF Patent ¹ 2337036. Publ. 27.10.2008. Bulletin 30.
  3. Pikul’ V.V. Sposob izgotovleniya steklometallokompozita [Method of Manufacturing of Composite Glass and Metal Material]. RF Patent ¹ 2304117. Publ. 08.10.2007. Bulletin 22.
  4. Gridasova E.A., Lyubimova O.N., Pestov K.N., Kayak G.L. Sposob izgotovleniya steklometallokompozita [Method of Manufacturing of a Composite Glass and Metal Material]. RF Patent ¹ 2428388. Publ.10.09.2011. Bull. ¹ 25.
  5. Gridasova E.A., Lyubimova O.N., Pestov K.N., Kayak G.L. Sposob izgotovleniya steklometallokompozita [Method of Manufacturing of a Composite Glass and Metal Material]. RF Patent ¹ 2428389. Publ.10.09.2011. Bull. ¹ 25.
  6. Lyubimova O. N., Gridasova E.A. Metod uprochneniya stekla pri diffuzionnoy svarke ego s metallom [Method of Glass Strengthening by Diffusion Welding to the Metal]. Svarka i diagnostika materialov [Welding and Diagnostics of Materials]. Moscow, no. 6, 2010, ðð. 31—45.

Download

Results 1 - 4 of 4