ARCHITECTURE AND URBAN DEVELOPMENT. RESTRUCTURING AND RESTORATION

Experience of restoration and reconstruction of architectural monuments: from engineering researches to projects implementation by scientists and students of MGSU

Vestnik MGSU 7/2014
  • Chernyshev Sergey Nikolaevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Geologo-Mineralogical Sciences, Professor, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 18-27

For more than 20 years the author with his colleagues conducts engineering researches, design of restoration and reconstruction of various architectural monuments. Full cycles of works from engineering investigations to implementation of the own projects are executed on three objects: 1) architectural monument of the 19th century, the church in the museum preserve Abramtsevo (Moscow region), during 2005-2006; 2) a monument of Orthodox church history, a unique soil construction which is called "The Holy Ditch" in the village Diveevo (Nizhny Novgorod region) since 1997 to the present; 3) Church of Our Lady of Kazan also in Diveevo village during 1997-2002. For churches engineering researches are executed, calculations of the bases are made, ways of strengthening the bases are chosen, architectural projects of restoration are created. The church is restored by students under supervision of the experts from the university. The church in Diveevo was partially destroyed during the Soviet period. During restoration high-rise parts of the church were constructed. The works were performed by working restorers under control of the author of article in 2002-2004. Participation of students, masters, graduate students in restoration works had great educational value, gave to young people experience and knowledge. Students studied under professional restorers. Generalization is given in summary. D.S. Likhachyov's theory and our own experience are used. The principle of reconstructing barbarously destroyed engineering constructions, buildings and architectural complexes is formulated. It corresponds to the realities of the 21st century, new technological capabilities and requirements of modern society. Briefly: the reconstructed structure, in our opinion, has to face not only the past, but also the future. It is not always necessary to create the exact copy of the lost construction. Recreating the destroyed construction, it is necessary to apply new materials to increase the reliability and eliminate constructive imperfection of ancient constructions together with preserving old forms. Buildings and constructions have to be under construction anew mainly for performance of former functions, but the buildings have to meet modern requirements on the equipment and internal planning, modern technical norms. The project of the lost building needs to be made taking into account the change of environment. These provisions were successfully incarnated in the process of construction of St. Ditch in Diveev and they are also illustrated on the examples of the reconstruction of the Cathedral of Christ the Savior in Moscow and Frauenkiche in Dresden.

DOI: 10.22227/1997-0935.2014.7.18-27

References
  1. Paushkin G.A., Cherkasova L.I., Kryzhanovskiy A.L., Alekseev G.V. Problemy nadezhnosti osnovaniy i fundamentov khramovykh zdaniy na ostrove Anzer [Problems of Reliability of Bases and Foundations of Temple Buildings on the Island Anzer]. Problemy obespecheniya ekologicheskoy bezopasnosti stroitel'stva: 4 Denisovskie chteniya, sbornik [Proceedings of the 4th Denisov Readings: Problems of Ensuring Ecological Safety of Construction]. Moscow, MGSU Publ., 2008, pp. 126—134.
  2. Arts and Crafts. Von Morris bis Mackintosh — Reformbewegung zwischen Kunstgewerbe und Sozialutopie. Darmstadt, 1995, 152 S.
  3. Kunstlerkolonien in Europa im Zeichnen der Ebene und des Himmels. Ausstellungskatalog des Germanischen Nationalmuseums. Nurenberg, 2002, 124 S.
  4. Chernyshev S.N., Shcherbina E.V. Svyataya Bogorodichnaya Kanavka: prirodnye usloviya i tekhnicheskie resheniya po vossozdaniyu [St. Ditch: Environmental and Technical Solutions for Reconstruction]. Prirodnye usloviya stroitel'stva i sokhraneniya khramov Pravoslavnoy Rusi: sbornik trudov 2-go Mezhdunarodnogo nauchno-prakticheskogo simpoziuma [Proceeding of the 2-nd International Scientific and Practical Symposium "Environmental Conditions of Construction and Preservation of the Temples of Orthodox Russia]. Sergiev Posad, the Moscow Patriarchate Publ., 2005, pp. 247—253.
  5. Tserkov' Kazanskoy ikony Bozhiey Materi v Diveeve [Church of Our Lady of Kazan in Diveevo]. Moscow, Yabloko Publ., 2004, pp. 99—106.
  6. Kornilov A.M., Cherkasova L.I., Chernyshev S.N. Prognoz osadok fundamentov pravoslavnykh khramov pri ikh restavratsii s uchetom istorii nagruzheniya osnovaniya i osobennostey konstruktsii fundamentov na primere tserkvi Kazanskoy ikony Bozhiey Materi Sv.-Troitskogo Serafimo-Diveevskogo monastyrya [Forecast of Foundation Settlement of Orthodox Temples at their Restoration Taking into Account the History of the Basis Loading and Features of the Bases Design on the Example of Church of Our Lady of Kazan of St. Troitsky Serafimo-Diveevsky monastery]. Akademicheskie chteniya N.A.Tsytovicha: 2-e Denisovskie chteniya [Proceeding of the N.A.Tsytovich's academic readings: 2-nd Denisov readings]. Moscow, MGSU Publ., 2003, pp. 80—84.
  7. Darchiya V.I., Pashkevich S.A., Pulyaev I.S., Pustovgar A.P., Chernyshev S.N. Vliyanie usloviy osveshchennosti otkosov na ekspluatatsionnye svoystva geosinteticheskikh setok na osnove poliamida-6 / [Influence of Ambient Light on Slopes on the Performance Properties of Geosynthetic Grids Based on Polyamide-6]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 12, pp. 101—108.
  8. Chernyshev S.N., Timofeev V.Yu. Merzlotnye i gibridnye inzhenerno-geologicheskie protsessy v glinistykh gruntakh sooruzheniy Svyatoy Bogorodichnoy kanavki [Frost and Hybrid Engineering Geological Processes in Clay Soil of the Constructions of the St. Ditch]. Inzhenernaya geologiya [Engineering Geology]. 2012, no. 6, pp. 68—72.
  9. Tazina N.G., Darchiya V.I. Sozdanie gazonnykh travostoev na ochen' krutykh sklonakh sil'noy zatenennosti v Diveeve [Creation the Lawn Herbages on Very Cool Slopes of Strong Opacity in Diveevo]. Resursosberegayushchie tekhnologii v lugovom kormoproizvodstve: Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii, posvyashchennoy 100-letiyu kafedry lugovodstva. Sbornik [Resource-saving Technologies in a Meadow Forage Production. St. Materials of the International Scientific and Practical Conference Devoted to the 100 Anniversary of the Chair of Grassland Culture]. SPbGAU Publ., 2013, pp. 240—245.
  10. Batsukh N., Chernyshtv S.N., Surmaagav M., Tkachev V.N. Influence of Engineering-Geological Conditions in the Mongolian Architecture. The Engineering Geology of Ancient Works, Monuments and Historical Sites, Proceedings of International Symposium. IAEG, Athens, 1988, pp. 223—228.
  11. Likhachev D.S. Ekologiya kul'tury [Ecology of the Culture]. Moscow, 1979, no. 7, pp. 173—179.
  12. Chernyshev S.N. Ekologiya kul'tury — chast' ucheniya o noosfere, ideynoe osnovanie vossozdaniya zdaniy i sooruzheniy [Culture in Ecology — a Part of the Noosphere, the Ideological Base in Reconstruction]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 12, pp. 123—130.
  13. Volker Stoll, Carsten Leibenart. Geotechnische und Hydrogeologische Arbeiten fur den Wiederaufbau der Frauenkirche Dresden und deren Umfeld. Prirodnye usloviya stroitel'stva i sokhraneniya khramov pravoslavnoy Rusi: sbornik tezisov 5-go Mezhdunarodnogo nauchno-prakticheskogo simpoziuma [Proceeding of the 5th International Scientific and Practical Symposium "Environmental Conditions of Construction and Preservation of the Temples of Orthodox Russia]. N. Novgorod, 2013, pp. 41—49.

Download

Rationale for the use of protective gaskets made of geotextiles and permeability evaluation of impervious coatings made of geomembranes

Vestnik MGSU 3/2015
  • Kosichenko Yuriy Mikhaylovich - Russian Research Institute of Land Improvement Problems (ROSNIIPM) Doctor of Technical Sciences, Professor, Deputy Director for Science, Russian Research Institute of Land Improvement Problems (ROSNIIPM), 190 Baklanovskiy prospekt, Novocherkassk, Rostov region, 346400, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Baev Oleg Andreevich - Russian Scientific Research Institute of Land Improvement Problems (RSRILIP) Candidate of Technical Sciences, Senior Researcher, Russian Scientific Research Institute of Land Improvement Problems (RSRILIP), 190 Baklanovskiy, Novocherkassk, Rostov oblast, 346400, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 48-58

The purpose of this paper is to design rationale for the use of protective pads of geotextiles and geomembranes permeability of PD using these pads. In order to justify the use of protective pads made of geotextile for reducing the defectiveness geomembrane soil fractions, the existing formulas to determine the thickness of the film element of impervious devices were examined. The calculations according to the formulas show that HDPE geomembrane with a minimum thickness of 1,0 mm, the protective lining of the geotextile should be applied at the average diameter fractions of soil of more than 6,5 mm, and for geomembranes HDPE - at a diameter of soil fractions of over 15,5 mm. In order to estimate the permeability of the TFG geomembrane using additional protective linings of geotextile in the scientific article the basic design schemes of such coatings with one and two layers of protective linings of geotextiles were considered. The evaluation results of water permeability of impervious surfaces with geotextile and for comparison - without geotextiles are given in a table. As it is shown by the data presented for the design scheme with a single layer of geotextile geomembrane at the base (in the presence of small holes in the geomembrane) the decrease the effectiveness of an anti-covering is more than 268,0 %, and for the settlement scheme covering with two layers of geotextile there will be a very large reduction in the efficiency, which almost completely reduces the effectiveness of the coating to the value of the geomembrane permeability of a soil layer without geomembrane with the filtration flow rate of 71,75 m
3/day, against water permeability of the geomembrane cover - 38,52 m
3/day. From the foregoing, it can be concluded that the application of a coating design of well filtering gaskets made of geotextile is justified in terms of protecting the geomembrane from mechanical damage, but greatly reduces the effectiveness of impervious cover in case of its damage.

DOI: 10.22227/1997-0935.2015.3.48-58

References
  1. Rasskazov L.N., Radzinskiy A.V., Sainov M.P. Vybor sostava glinotsementobetona pri sozdanii «steny v grunte» [Choosing the Composition of Clay Cement Concrete while Constructing the “Wall in the Soil”]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 2014, no. 3, pp. 16—23. (In Russian)
  2. Rasskazov L.N., Aniskin N.A. Fil’tratsionnye raschety gidrotekhnicheskikh sooruzheniy i osnovaniy [Seepage Analysis of Hydraulic Structures and Bases]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 2000, no. 11, pp. 2—7. (In Russian)
  3. Aniskin N.A. Temperaturno-fil’tratsionnyy rezhim prigrebnevoy zony gruntovoy plotiny v surovykh klimaticheskikh usloviyakh [Thermal and Filtration Behaviour of the Earth Dam Crest Area in Severe Climatic Conditions]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 4, pp. 129—137. (In Russian)
  4. Aniskin N.A., Antonov A.S., Mgalobelov Yu.B., Deyneko A.V. Issledovanie fil’tratsionnogo rezhima osnovaniy vysokikh plotin na matematicheskikh modelyakh [Studying the Filtration Mode of Large Dams’ Foundations on Mathematical Models]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 10, pp. 114—131. (In Russian)
  5. Aniskin N.A., Memarianfard M.E. Uchet anizotropii v fil’tratsionnykh raschetakh i raschetakh ustoychivosti otkosov gruntovykh plotin [Accounts for Anisotropy in Seepage Analyses of Stability Calculation of Soil Dam Slopes]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 1, pp. 169—174. (In Russian)
  6. Sol’skiy S.V., Novitskaya O.I., Kubetov S.V. Otsenka effektivnosti drenazhnykh i protivofil’tratsionnykh ustroystv betonnykh plotin na skal’nom osnovanii (na primere Bureyskoy GES) [Efficiency Determination of the Drainage and Impervious Devices of Concrete Dams on Rock Base (on the Example of Bureyskaya HPP). Inzhenerno-stroitel’nyy zhurnal [Magazine of Civil Engineering]. 2014, no. 4 (48), pp. 28—38. (In Russian)
  7. Kosichenko Yu.M., Baev O.A. Protivofil’tratsionnye pokrytiya iz geosinteticheskikh materialov [Impervious Coatings Made of Geosynthetics]. Novocherkassk, RosNIIPM Publ., 2014, 239 p. (In Russian)
  8. Sol’skiy S.V., Orlova N.L. Perspektivy i problemy primeneniya v gruntovykh gidrotekhnicheskikh sooruzheniyakh sovremennykh geosinteticheskikh materialov [Prospects and Problems of Using Modern Geosynthetics]. Izvestiya VNIIG im. B.E. Vedeneeva [Proceeding of the VNIIG]. 2010, vol. 260, pp. 61—68. (In Russian)
  9. Kosichenko Yu.M., Lomakin A.V. Gibkie konstruktsii protivofil’tratsionnykh i beregoukrepitel’nykh pokrytiy s primeneniem geosinteticheskikh materialov [Flexible Structures of Impervious and Coast-Protecting Coatings Using Geosynthetics]. Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Tekhnicheskie nauki [Scientific-educational and applied Journal Izvestiya Vuzov. Severo-Kavkazskii Region]. 2012, no. 5 (168), pp. 73—79. (In Russian)
  10. Glagovskiy V.B., Sol’skiy S.V., Lopatina M.G., Dobrovskaya N.V., Orlova N.L. Geosinteticheskie materialy v gidrotekhnicheskom stroitel’stve [Geosynthetics in Hydraulic Engineering]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 2014, no. 9, pp. 23—27. (In Russian)
  11. Shchedrin V.N., Kosichenko Yu.M., Mironov V.I., Ishchenko A.V., et al. Vybor effektivnoy i nadezhnoy protivofil’tratsionnoy zashchity rusel otkrytykh kanalov pri rekonstruktsii orositel’nykh sistem (rekomendatsii) [Choosing Efficient and Reliable Cut-off Wall for the Open Canal Beds during Reconstruction of Irrigation Systems (Recommendations)]. Rostov-on-Don, SKNTs VSh YuFU Publ., 2008, 68 p. (In Russian)
  12. Kosichenko Yu.M., Baev O.A. Vysokonadezhnye konstruktsii protivofil’tratsionnykh pokrytiy kanalov i vodoemov, kriterii ikh effektivnosti i nadezhnosti [Highly-Reliable Structures of Membranes for Channels and Reservoirs, their Efficiency and Reliability Criteria]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 2014, no. 8, pp. 18—25. (In Russian)
  13. Shchedrin V.N., Kosichenko Yu.M., Ishchenko A.V., Baev O.A. Vysokonadezhnye konstruktsii protivofil’tratsionnykh oblitsovok kanalov i vodoemov s primeneniem innovatsionnykh materialov [Highly Reliable Structures of Seepage-control Lining of Channels and Reservoirs Using Innovative Materials]. Novocherkassk, 2013, Dep. v VINITI 13.01.2014, no. 7-V 2014, 26 p. (In Russian)
  14. Rekomendatsii po proektirovaniyu i stroitel’stvu protivofil’tratsionnykh ustroystv iz polimernykh rulonnykh materialov [Recommendations on Design and Construction of Geomembranes Made of Polymer Roll Materials]. Saint Petersburg, NII AKKh im. K.D. Pamfilova Publ., 1999, 40 p. (In Russian)
  15. Instruktsiya po proektirovaniyu i stroitel’stvu protivofil’tratsionnykh ustroystv iz polietilenovoy plenki dlya iskusstvennykh vodoemov [Specification on Design and Construction of Geomembranes Made of Polyethylene Film for Artificial Reservoirs]. Requirements SN 551—82. Moscow, Stroyizdat Publ., 1983, 40 p. (In Russian)
  16. Glebov V.D., Krichevskiy I.E., Lysenko V.P., Sudakov V.B., Tolkachev L.A. Plenochnye protivofil’tratsionnye ustroystva gidrotekhnicheskikh sooruzheniy [Film Geomembranes of Hydraulic Structures]. Moscow, Energiya Publ., 1976, 207 p. (In Russian)
  17. Lupachev O.Yu. Issledovaniya povrezhdaemosti geomembran chastitsami grunta zashchitnykh sloev [Invesrtigation of Geomambrane Damaging by Soil Particles of Protecting Layers]. Geosinteticheskie materialy v promyshlennom i gidrotekhnicheskom stroitel’stve : sbornik materialov I Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Geosynthetics in Industrial and Hydraulic Engineering : Collection of Works of the 1st International Science and Technical Conference]. Saint Petersburg Tandem Publ., 2011, pp. 35—49. (In Russian)
  18. Gladshteyn O.I. Osobennosti primeneniya geosinteticheskikh materialov v gidrotekhnicheskom stroitel’stve [Features of Geosynthetics Use in Hydraulic Engineering]. Gidrotekhnika [Hydrotechnics]. 2009, no.1 (14), pp. 69—70. (In Russian)
  19. Kosichenko Yu.M., Baev O.A. Teoreticheskaya otsenka vodopronitsaemosti protivofil’tratsionnykh oblitsovok narushennoy sploshnosti [Theoretical Estimation of Permeability of Seepage-control Linings with the Disturbed uniformity]. Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Tekhnicheskie nauki [Scientific-educational and applied Journal Izvestiya Vuzov. Severo-Kavkazskii Region]. 2014, no. 3, pp. 6—74. (In Russian)
  20. Altunin V.S., Borodin V.A., Ganchikov V.G., Kosichenko Yu.M. Zashchitnye pokrytiya orositel’nykh kanalov [Protective Coverings of Irrigation Channels]. Moscow, Agropromizdat Publ., 1988, 158 p. (In Russian)
  21. Kosichenko Yu.M., Borodin V.A., Ishchenko A.V. Instruktsiya po raschetu vodopronitsaemosti i effektivnosti protivofil’tratsionnykh oblitsovok kanalov [Recommendations on Permeability and Efficiency Calculation of Seepage-control Linings of the Channels]. Moscow, Novocherkassk, 1984, 99 p. (In Russian)
  22. Nedriga V.P. Inzhenernaya zashchita podzemnykh vod ot zagryazneniya promyshlennymi stokami [Engineering Protection of Underground Waters from Industrial Waste Pollution]. Moscow, Stroyizdat Publ., 1976, 95 p. (In Russian)
  23. Ishchenko A.V. Gidravlicheskaya model’ vodopronitsaemosti i effektivnosti protivofil’tratsionnykh oblitsovok krupnykh kanalov [Hydraulic Model of Permeability and Efficiency of Seepage-control Linings of Big Channels]. Izvestiya VNIIG im. B.E. Vedeneeva [Proceeding of the VNIIG]. 2010, vol. 258, pp. 51—64. (In Russian)
  24. Kosichenko Yu.M., Baev O.A. Matematicheskoe i fizicheskoe modelirovanie fil’tratsii cherez malye povrezhdeniya protivofil’tratsionnykh ustroystv iz polimernykh geomembran [Mathematical and Physical Modelling of Filtration through Small Damages of Impervious Devices Made of Polymer Geomembranes]. Izvestiya VNIIG im. B.E. Vedeneeva [Proceeding of the VNIIG]. 2014, vol. 274, pp. 60—74. (In Russian)
  25. Ishchenko A.V. Sklyarenko E.O. Konstruktivnye skhemy protivofil’tratsionnoy zashchity nakopiteley otkhodov i fil’tratsionnye raschety ikh effektivnosti [Structural Schemes of Impervious Protection of Waste Deposits]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 2007, no. 3, pp. 21—25. (In Russian)

Download

Experimental evaluation of drainage filters sealing in peat soils

Vestnik MGSU 2/2014
  • Nevzorov Aleksandr Leonidovich - Northern (Arctic) Federal University named after M.V. Lomonosov (SAFU) Doctor of Technical Sciences, Professor, Head, Department of Engineering Geology, Bases and Foundations, Northern (Arctic) Federal University named after M.V. Lomonosov (SAFU), 17 Severnaya Dvina Emb., Arkhangelsk, 163002, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Zaborskaya Ol'ga Mikhaylovna - Northern (Arctic) Federal University named after M.V. Lomonosov (SAFU) Senior Lecturer, Department of Structural Mechanics and Strength of Materials, Northern (Arctic) Federal University named after M.V. Lomonosov (SAFU), 17 Severnaya Dvina Emb., Arkhangelsk, 163002, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Nikitin Andrey Viktorovich - Northern (Arctic) Federal University named after M.V. Lomonosov (SAFU) Candidate of Technical Sciences, Associate Professor, Department of Enginee, Northern (Arctic) Federal University named after M.V. Lomonosov (SAFU), 17 Severnaya Dvina Emb., Arkhangelsk, 163002, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 84-90

The article deals with research results of the sealing of pores in drainage filters by organic particles. Permeability tests were carried out with the constant gradient 1.5. The water flow through the sample of soil was top-down.The tests were carried out with 2 types of samples: the first part of samples had layers (from up to down) 300 mm peat and 2 layers of geotextile, the second part consisted of 250 mm peat, 200 mm fine sand and 2 layers of geotextile. Well decomposed peatsamples were used. Peat had the following characteristics: density is 1,05...1,06 g/cm3, specific density — 1,53...1,56 g/cm3, void ratio — 12,0...12,5. The duration of each test was 15 days. During testing the hydraulic conductivity of samples was decreased by 1.3...1.9.After completing the tests the hydraulic conductivity of sand and geotextile were measured. The content of organic matter in geotextile and fine sand was determined as well. Dry mass of organic matter in the first layer of geotextile in the first type of samples were 1,0…1,3 g per 75 cm2. The organic matter in the second layer of geotextile in the first type of samples and in the first layer of geotextile in the second type wasn’t exposed. Fine sands protected the drainage geotextile as a result of sealing of pore space of sands by organic matter.

DOI: 10.22227/1997-0935.2014.2.84-90

References
  1. Emel'yanova T.Ya., Kramarenko V.V. Obosnovanie metodiki izucheniya deformatsionnykh svoystv torfa s uchetom izmeneniya stepeni ego razlozheniya [Substantiation of the Study Method of Deformation Properties of Peat Taking into Account the Changes in its Decomposition Degree]. Izvestiya Tomskogo politekhnicheskogo universiteta [Proceedings of Tomsk Polytechnic University]. 2004, no. 5, pp. 54—57.
  2. Kramarenko V.V., Emel'yanova T.Ya. Kharakteristika fizicheskikh svoystv verkhovykh torfov Tomskoy oblasti [Description of the Physical Properties of High-moor Peat in Tomsk Region]. Vestnik Tomskogo gosudarstvennogo universiteta [Proceedings of Tomsk State University]. 2009, no. 322, pp. 265—272.
  3. Ivanov K.Å. Vodoobmen v bolotnykh landshaftakh [Water Cycle in Moor Landscapes]. Leningrad, Gidrometeoizdat Publ., 1975, 280 p.
  4. Drozd P.À. Sel'skokhozyaystvennye dorogi na bolotakh [Agricultural Roads on Moors]. Minsk, Uradzhay Publ., 1966, 167 p.
  5. Nevzorov À.L., Nikitin À.V., Zarychevnych À.V. Gorod na bolote: monografiya [A City on the Bog: Monograph]. Northern (Arctic) Federal University named after M.V. Lomonosov. Arkhangelsk, NArFU Publ., 2012, 157 p.
  6. Dimukhametov M.Sh., Dimukhametov D.M. Fiziko-mekhanicheskie svoystva zatorfovannykh gruntov Kamskoy doliny g. Permi i ikh izmenenie v rezul'tate deystviya prigruzki [Physical and Mechanical Properties of Peat of Kama Valley in Perm City and their Changes as a Result of Pressure Action]. Vestnik Permskogo universiteta [Proceedings of Perm State University]. 2009, no. 11, pp. 94—107.
  7. Bugay N.G., Krivonog A.I., Krivonog V.V., Fridrikhson V.L. Voloknisto-poristye materialy iz polimernykh volokon v meliorativnom i gidrotekhnicheskom stroitel'stve i pri ochistke vody [Fibrous-porous Materials of Polymer Fibers in Soil Reclamation and Hydraulic Engineering Construction and Water Treatment]. Prikladnaya gidromekhanika [Applied Hydromechanics]. 2007, vol. 9, no. 2—3, pp. 37—51.
  8. Chernyaev E.V. Srok sluzhby geotekstil'nykh materialov [Lifetime of Geotextile Materials]. Put' i putevoe khozyaystvo [Road and Track Facilities]. 2010, no. 7, pp. 37—39.
  9. Tkach V.V. Drenazhnyy fil'tr iz netkanogo polotna [Drainage from Nonwoven Materials]. Gidrotekhnika i melioratsiya [Hydraulic Engineering and Land Reclamation]. 1983, no.10, pp. 76—77.
  10. Bugay N.G., Tkach V.V., Fridrikhson V.L. Podbor tkanykh i netkanykh ZFM pri ispol'zovanii ikh v trubchatykh drenazhakh s fil'truyushchey obsypkoy [Selection of Woven and Nonwoven Materials Applied in Tubular Drainage with Permeable Package]. Gidrotekhnika i melioratsiya [Hydraulic Engineering and Land Reclamation]. 1983, no. 6, pp. 52—53.

Download

Results 1 - 3 of 3