TECHNOLOGY OF CONSTRUCTION PROCEDURES. MECHANISMS AND EQUIPMENT

Efficiency analysis of technologies applied in the course of selecting approaches to organization of constructionoperations and renovation of pipelines

Vestnik MGSU 7/2013
  • Sapukhin Aleksandr Aleksandrovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Hydraulics, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kurochkina Valentina Aleksandrovna - 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation Candidate of Technical Sciences, Associate Professor, Department of Hydraulics and Water Resources, 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation, ; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Novikov Sergey Olegovich - Moscow State University of Civil Engineering (MGSU) student, Institute of Construction and Architecture, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 96-105

The authors consider particular methods, technologies and organizational aspects that may be implemented in the construction and renovation of pipelines using polythene materials instead of metals due to their economic and practical efficiency. It is noteworthy that the corrosion problem of steel pipelines is the phenomenon of metal destruction that reduces the throughput of pipelines and facilitates obstructions, juncture cleavages and water leaks as a result of reduction of service lives of pipelines. The authors analyzed the efficiency of polythene pipes from the viewpoint of hydraulic processes and the economic expediency; the authors identified that the polythene pipe’s throughput is 3 times as much as the one of steel pipes. Also, the authors determined the economic efficiency of polythene pipes: USD 0.5 million per 1 kilometer of pipeline.The authors take account of the technology-related aspect, as the water pipeline construction and reconstruction processes are limited by dense urban environments or due to the absence of overhaul factories in the close proximity to pipelines. Therefore, the results of the analysis evidence the efficiency of application of polythene in construction and reconstruction of pipeline engineering systems. It is highly resistant to abrasion and corrosion; it boosts the water flow velocity due to the low rough-ness of the internal surface; its service life is long enough, and its transportation is problem-free.

DOI: 10.22227/1997-0935.2013.7.96-105

References
  1. Kurochkina V.A. Vliyanie vozdukha v truboprovode na velichinu gidravlicheskogo udara [Influence of Air inside Pipelines onto Water Hammer Intensity]. Stroitel’stvo — formirovanie sredy zhiznedeyatel’nosti : Sb. trudov IV Mezhdunar. mezhvuz. nauch.-prakt. konf. molodykh uchenykh, aspirantov i doktorantov. [Construction – Formation of the Environment. Collected works of the 4th International inter-university science and practice conference of young researchers, postgraduates and doctoral students]. Moscow, 2001, pp. 84—88.
  2. Sapukhin A.A., Pavlov E.I., Gergalov L.A. Opredelenie raskhodov v vodootvodyashchikh kollektorakh, rabotayushchikh v napornom rezhime [Identification of Consumption Rates in Sewage Reservoirs Operating in the Pressure Mode]. Stroitel’nye materialy, izdeliya i santekhnika [Construction Materials, Products and Sanitary Engineering]. Kiev, Budivel’nik Publ., 1987, no. 10, pp. 35—42.
  3. Khachaturov A.K., Rubashov A.M. Vodno-khimicheskiy rezhim sovmestnoy raboty sistemy oborotnogo okhlazhdeniya TETs i teploseti [Water Chemistry Mode of Joint Operation of the System of Reverse Cooling of TPPs and Heating Networks]. Ochistka prirodnykh i stochnykh vod. Sb. nauch. tr. [Treatment of Natural and Sewage Water. Collection of research works]. Moscow, 2009, pp. 20—24.
  4. Frenkel’ N.Z. Gidravlika. Ch. 1 [Hydraulics. Part 1]. Moscow – Leningrad, Gosenergizdat Publ., 1956, pp. 210—239.
  5. Krzys B. White Paper on Rehabilitation of Waste Water Collection and Water Distribution Systems. EPA, 2009, no. 9, pp. 24. Available at: http://nepis.epa.gov. Date of access: 17.04.13.
  6. Ginzburg Ya.N., Leznov B.S. Sovremennye metody regulirovaniya rezhimov raboty sistem vodosnabzheniya krupnykh gorodov [Contemporary Methods of Regulation of Modes of Operation of Water Supply Systems of Major Cities]. Vodosnabzhenie i sanitarnaya tekhnika. Sb. [Water Supply and Sanitary Engineering. Collected Works]. Moscow, GOSINTI Publ., 1976, pp. 51—62.
  7. Agachev V.I., Vinogradov D.A. Sostoyanie i perspektivy bestransheynogo metoda vosstanovleniya sistem vodosnabzheniya i vodootvedeniya [State of and Prospects for the Trenchless Method of Restoration of Water Supply and Discharge Systems]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Engineering]. 2003, no. 12, pp. 15—24.
  8. Kosygin A.B. Avariynyy remont vodoprovoda pri pomoshchi telerobotov [Emergency Repairs of Water Supply Pipelines Using Tele-operated Robots]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Engineering]. 2000, no. 2, pp. 9—16.
  9. Khramenkov S.V. Tekhnologiya vosstanovleniya truboprovodov bestransheynymi metodami [Technology for Restoration of Pipelines Using Trenchless Methods]. Sb. statey i publikatsiy Moskovskogo Vodokanala [Collected articles and publications of Vodokanal - Moscow Water Services Company]. Moscow, 2004, pp. 236—251.
  10. Najafi M. Structural Evaluation of No-Dig Manhole Rehabilitation Technologies. Benjamin Media, 2013. Available at: http://www.trenchlessonline.com. Date of access: 17.04.13.

Download

Results 1 - 1 of 1