Vestnik MGSU 8/2013
  • Sainov Mikhail Petrovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Hydraulic Engineering, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Khokhlov Sergey Viktorovich - TempStroySistema Head of Dam and Bridges Department, TempStroySistema, 5 Universitetskiy prospect, Moscow, 119296, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 78-88

The article deals with the results of the numerical analysis of the stress-strain state of a 50 m high earthfill cofferdam. A geocomposite membrane (geo-membrane and geotextile layers) in its upper part (20 m) serves as a seepage control element. The grout curtain is installed in the lower part of the cofferdam and in the foundation. The cofferdam design implements the idea of using riprap to reduce the weight of the geocomposite membrane.The analysis proves that the high weight of the membrane considerably worsens the stress state of both the membrane and the whole dam. First of all, the load causes additional deflection of the membrane and consequently increases tensile stresses inside it. Second, due to the low value of the friction coefficient (approximately 0.3 0.4) in the point of contact between the geocomposite membrane and soil the dam upstream shell may slide down along the geocomposite membrane. Additional dam displacements may cause considerable tensile forces in the geomembrane. Their maximum values are comparable to the strength of the polymer material used for the manufacturing of the membrane. Any rupture of the membrane and geotextile layers may be expected. The analysis proves that it is necessary to get compensators in the polymer membrane allowing for the extension of the membrane absent of any tensile forces.The analysis proves that the geocomposite membrane does not affect the stressstrain state of the earth fill due to its small thickness. Non-linear effects of “earth – geomembrane” contacts are to be taken into account, because tensile forces appear inside geo-membranes due to the presence of friction forces.

DOI: 10.22227/1997-0935.2013.8.78-88

  1. Popchenko S.N., Glebov V.D., Igonin Kh.A. Opyt primeneniya polimernykh materialov v gidrotekhnicheskom stroitel'stve [Experience of Application of Polymeric Materials in Hydraulic Engineering]. Gidrotekhnicheskoe stroitel'stvo [Hydraulic Engineering Construction]. 1973, no. 12, pp. 9—13.
  2. Radchenko V.P., Semenkov V.M. Geomembrany v plotinakh iz gruntovykh materialov [Geomembranes in Dams Made of Soil Materials]. Gidrotekhnicheskoe stroitel'stvo [Hydraulic Engineering Construction]. 1993, no. 10.
  3. Brusse A.G., Glebov V.D., Detkov B.V. Polietilenovyy ekran peremychki Ust'-Khantayskoy GES [Polyethylene Screen of the Cofferdam of Ust-Khantaiskaya HPP]. Gidrotekhnicheskoe stroitel'stvo [Hydraulic Engineering Construction]. 1971, no. 11, pp. 4—5.
  4. Gol'din A.L., Rasskazov L.N. Proektirovanie gruntovykh plotin [Design of Earthfill Dams]. Moscow, ASV Publ., 2001, 384 p.
  5. Zinevich N.I., Lysenko V.P., Nikitenkov A.F. Tsentral'naya plenochnaya diafragma plotiny Atbashinskoy GES [Central Membrane Diaphragm of the Dam of Atbashi HPP]. Energeticheskoe stroitel'stvo [Construction of Power Generation Facilities]. 1974, no. 3, pp. 59—62.
  6. Glebov V.D., Lysenko V.P. Konstruirovanie plenochnykh protivofil'tratsionnykh elementov v plotinakh i peremychkakh [Design of Membrane Waterstop Elements of Dams and Cofferdams] Gidrotekhnicheskoe stroitel'stvo [Hydraulic Engineering Construction]. 1973, no. 5, pp. 33—35.
  7. Ayrapetyan R.A. Proektirovanie kamenno-zemlyanykh i kamennonabrosnykh plotin [Design of Masonry-earthfill and Masonry-riprap Dams]. Moscow, Energiya Publ., 1975.
  8. Rekomendatsii po proektirovaniyu i stroitel'stvu protivofil'tratsionnykh ustroystv iz polimernykh rulonnykh materialov [Guidelines for Design and Construction of Waterstop Devices Made of Polymeric Roll Materials]. St.Petersburg, OAO VNIIG im. B.E.Vedeneeva Publ., SPb. NII AKKh im. K.D. Pamfilova Publ., 2001.
  9. SN 551—82. Instruktsiya po proektirovaniyu i stroitel'stvu protivofil'tratsionnykh ustroystv iz polietilenovoy plenki dlya iskusstvennykh vodoemov [Construction Rule 551—82. Guidelines for Design and Construction of Waterstop Devices Made of the Polyethylene Film for Artificial Reservoirs]. OOO Gidrokor Publ., 2001.
  10. Scuero A.M., Vaschetti G.L. Repair of CFRDs with Synthetic Geomembranes in Extremely Cold Climates. Proceedings, Hydro 2005 – Policy into Practice. Villach, 2005.
  11. Sembenelli P., Rodriquez E.A. Geomembranes for Earth and Earth-Rock Dams: State-of-the-Art Report. Proc. Geosynthetics Applications, Design and Construction. M. B. de Groot et al., Eds. A. A. Balkema, 1996, pp. 877—888.
  12. Korchevskiy V.F., Obopol' A.Yu. O proektirovanii i stroitel'stve Kambaratinskikh gidroelektrostantsiy na r. Naryne v Kirgizskoy Respublike [On Design and Construction of Kambarata Hydraulic Power Plants on the Narin River in the Kyrgyz Republic]. Gidrotekhnicheskoe stroitel'stvo [Hydraulic Engineering Construction]. 2012, no. 2, pp. 2—12.
  13. Pietrangeli G., Pietrangeli A., Scuero A., Vaschetti G., Wilkes J. Gibe III: Zigzag Geomembrane Core for Rockfill Cofferdam in Ethiopia. 31st Annual USSD Conference. San Diego, California, April 11-15, 2011, pp. 985—994.


Results 1 - 1 of 1