SAFETY OF BUILDING SYSTEMS. ECOLOGICAL PROBLEMS OF CONSTRUCTION PROJECTS. GEOECOLOGY

Engineering protection of pipelinesfrom erosion processes

Vestnik MGSU 7/2013
  • Skapintsev Aleksandr Evgen’evich - “Fundamentproekt” Open Joint Stock Company Team Leader, “Fundamentproekt” Open Joint Stock Company, 1 Volokolamskoe shosse, Moscow, 125993, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Potapov Aleksandr Dmitrievich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Chair, Department of Engineering Geology and Geo-ecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Lavrusevich Andrey Alexandrovich - Moscow State University of Civil Engineering (MGSU) Candidate of Geological and Mineralogical Sciences, Professor, Department of Engineering Geology and Geo-ecology; +7 (495) 500-84-26., Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 140-151

The authors consider varied engineering actions aimed at the protection of pipelines from developing erosion processes with a focus on the conditions of northern regions. Engineering solutions, considered in the article, include prevention of erosion processes along pipelines, protection from suffusion, protection of extended areas having the limit value of the slope angle, and actions aimed at the drainage of areas along pipelines. Prevention of erosion processes along pipelines consists in the restoration of the fertile layer using biological methods, as well as the volumetric soil reinforcement using geological grids. Prevention of suffusion processes consists in the employment of various types of suffusion shields accompanied by the application of geotextile. Berms are constructed as suffusion prevention actions in extended areas having a limit value of the slope angle. This action is used to reduce the water flow energy of drainage ditches and trays along the pipeline. The authors believe that a complete geotechnical monitoring network must be designed and developed to monitor the condition of pipelines and foundation soils.

DOI: 10.22227/1997-0935.2013.7.140-151

References
  1. Ragozin A.L., editor. Prirodnye opasnosti Rossii [Natural Hazards of Russia]. Moscow, Kruk Publ., 2002 — 2003. 320 p.
  2. Golodkovskaya G.A. Printsipy inzh.-geol. tipizatsii mestorozhdeniy poleznykh iskopaemykh [Principles of Geo-engineering Typification of Mineral Deposits]. Voprosy inzhenernoy geologii i gruntovedeniya [Issues of Engineering Geology and Pedology]. 1983, no. 5, pp. 355—369.
  3. Gensiruk S.A. Ratsional'noe prirodopol'zovanie [Rational Nature Management]. Moscow, 1989. 310 p.
  4. ¹ RD 39-00147105-006—97. Instruktsiya po rekul'tivatsii zemel', narushennykh i zagryaznennykh pri avariynom i kapital'nom remonte nefteprovodov [N RD 39-00147105- 006—97. Instruction for Reclamation of Soils Disturbed by Emergency and Capital Repairs of Oil Pipelines]. Moscow, Transneft' Publ., 1997.
  5. SPA “Promkompozit” website. Available at: http://www.promcompozit.ru/cgi-bin/index.cgi?adm_act=strukture&num_edit=1035. Date of access: 25.05.2013.
  6. Private company “Vyrobnyche ob’jednannja Gabiony zahid Ukrai'na” website. Available at: http://www.zahid-gabions.cv.ua. Date of access: 23.05.2013.
  7. Sarsby R.W.Ed. Geosynthetics in Civil Engineering. Woodhead Publishing Ltd., Cambridge, England, 2007. 312 p.
  8. Jones K.D. Sooruzheniya iz armirovannogo grunta [Earth Reinforcement and Soil Structures]. Moscow, Stroyizdat Publ., 1989. 281 p.
  9. Dixon N., Smith D.M., Greenwood J.R. and Jones D.R.V. Geosynthetics: Protecting the Environment. Thomas Telford Publ., London, England, 2003. 176 p.
  10. LLC “Water Construction” website. Available at: http://vodbud.com/index.php?go=Content&id=15. Date of access: 25.05.2013.
  11. Waltham T., Bell T., Culshaw M. Sinkholes and Subsidence. Springer, Berlin, 2005. 300 p.
  12. Trofimov V.T., Voznesenskiy E.A., Korolev V.A. Inzhenernaya geologiya Rossii. T. 1. Grunty Rossii [Engineering Geology of Russia. Vol. 1. Soils of Russia]. Moscow, KDU Publ., 2011. 672 p.
  13. Istomina B.C. Fil'tratsionnaya ustoychivost' gruntov [Filtration Stability of Soils]. Moscow, 1957. 296 p.

Download

The hydraulic research of the downstream of water transport hydroscheme usingaerodynamic model

Vestnik MGSU 2/2014
  • Malakhanov Vyacheslav Vasil'evich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Hydraulic Structuress, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, 129337, Moscow, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 154-163

The article presents the results of the first stage of the model research of the river downstream currents in the water transport hydroscheme and the analysis of their influence on the channel processes and navigation.The author presents a justification of the method of river flow research using the pressure aerodynamic model. The model is a geometrically similar part of a river with the hydroscheme of 1200 m length in nature. As a result of the research the velocity profiles were indentified in six sections along riverbed, the geometric dimensions of a whirlpool were discovered, the areas of the most intensive exposure of the river flow to the banks were identified, the navigable conditions were specified on the way to the lower head lock, the recommendations for the river banks protection from erosion have been given.

DOI: 10.22227/1997-0935.2014.2.154-163

References
  1. Zavadskiy A.S., Ruleva S.N., Turykin L.A., Chalov R.S., Shmykov V.G. Pereformirovanie rusel rek Vychegda i Sysola v Syktyvkarskom vodnom uzle i mery po predotvrashcheniyu ikh negativnykh tendentsiy [Reforming the Beds of the Rivers Vychegda and Sysola in Syktyvkar Hydroscheme and Means to Prevent the Negative Tendencies]. Rechnoy transport (20 vek) [River Transport (20th Century)]. 2011, no. 6 (54), pp. 82—87.
  2. Belikov V.V., Zavadskiy A.S., Ruleva S.N., Chalov R.S. Rezul'taty modelirovaniya spryamleniya rusla r. Oki v rayone g. Kolpashevo [The Results of the Cutoff Simulation of the River Oka near Kolpashevo City]. Rechnoy transport (20 vek) [River Transport (20th Century)]. 2010, no. 4 (46), pp. 82—87.
  3. Lyatkher V.M., Prudovskiy A.M. Issledovaniya otkrytykh potokov na napornykh modelyakh [Researches of the Open Flows Using Pressure Aerodynamic Models]. Moscow, Energiya Publ., 1971.
  4. Lyatkher V.M., Prudovskiy A.M. Gidravlicheskoe modelirovanie [Hydraulic Modeling]. Moscow, Energoatomizdat Publ., 1984.
  5. Kiselev P.G., editor. Spravochnik po gidravlicheskim raschetam [Handbook of Hydraulic Calculations].Moscow, Energiya Publ., 1972.

Download

EROSION OF MODEL RIVER BEDS COMPOSED OF SPHERICAL PARTICLES

Vestnik MGSU 6/2013
  • Borovkov Valeriy Stepanovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Department of Hydraulics, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; mgsu-hydraulic@ yandex.ru; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Volynov Mikhail Anatol’evich - A.N. Kostyakov All-Russian Research Institute of Hydraulic Engineering and Land Reclamation (VNIIGiM) Candidate of Technical Sciences, Associate Professor, Chair, Department of Water Resources Management, A.N. Kostyakov All-Russian Research Institute of Hydraulic Engineering and Land Reclamation (VNIIGiM), 127550, 44 Bol’shaya Akademicheskaya St., Moscow, 127550 Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 123-160

Erosion of a model river bed composed of spherical particles is analyzed in the article. The authors provide their summarized analysis of forces applied by the water flow onto particles of the upper layer of the model bottom soil composed of spherical particles. The authors have proven that the force producing the hydrostatic surcharge is determined by the dimensions of areas of tight particle-to-particle contacts, where a thin film of unfree water is incapable of transmitting hydrostatic pressure. This force must be considered if the particle size is below 0.03 mm. The authors have identified that the principal force responsible for the elevation of particles is the lifting force caused by the flow asymmetry in the upper soil layer. If the velocity demonstrated on the tops of particles of the upper soil layer is considered as the characteristic velocity, criterial condition of elevation of particles by the water flow is obtained as the ratio of this velocity to the hydraulic size of particles which is equal to one. The authors provide their explanation backing the above conclusion.

DOI: 10.22227/1997-0935.2013.6.123-160

References
  1. Regazzoni P.L., Marot D. Investigation of Interface Erosion Rate by Jet Erosion Test and Statistical Analysis. European Journal of Environmental and Civil Engineering. 2011, vol. 15, no. 8, pp. 1167—1185.
  2. Salehi Sadaghiani M.R., Witt K.J. Experimental Identification of Mobile Particles in Suffusible Non-cohesive Soils. European Journal of Environmental and Civil Engineering. 2011, vol. 15, no. 8, pp. 1155—1165.
  3. Dey A.K., Tsujimoto T., Kitamura T. Experimental Investigations on Different Modes of Headcut Migration. Journal of Hydraulic Research. 2007, vol. 45, pp. 333—346.
  4. Shlikhting G. Teoriya pogranichnogo sloya [Boundary Layer Theory]. Moscow, Nauka Publ., 1969, 742 p.
  5. Shterenlikht D.V. Gidravlika [Hydraulics]. Moscow, Kolos Publ., 2004, 655 p.
  6. Deryagin B.V., Krotova N.A., Smilga V.P. Adgeziya tverdykh tel [Adhesion of Solid Bodies]. Moscow, Nauka Publ., 1973, 280 p.
  7. Davis M., K?hler H.J., Koenders M.A. Unsaturated Subsoil Erosion Protection in Turbulent Flow Conditions. Journal of Hydraulic Research. 2006, vol. 44, no. 3, pp. 41—43.
  8. Lelyavskiy S. Vvedenie v rechnuyu gidravliku [Introduction into River Hydraulics]. Leningrad, Gidrometeoizdat Publ., 1961, 228 p.
  9. Mikhaylova N.A. Perenos tverdykh chastits turbulentnymi potokami vody [Transfer of Solid Particles by Turbulent Water Flows]. Leningrad, Gidrometeoizdat Publ., 1966, 232 p.
  10. Deryagin B.V., Abrikosova I.I., Lifshits E.M. Molekulyarnoe prityazhenie kondensirovannykh tel [Molecular Attraction of Condensed Bodies]. Sb. fizich. nauk [Collection of Physical Sciences]. 1958, no. 64, pp. 493—528.
  11. Bobkov V.F., Gerburt-Geybovich A.V. Osnovy gruntovedeniya i mekhaniki gruntov [Fundamentals of Pedology and Soil Mechanics]. Moscow, Vysshaya shkola publ., 1964, 365 p.
  12. Kiselev P.G. Gidravlika. Osnovy mekhaniki zhidkosti. [Hydraulics. Fundamentals of Fluid Mechanics]. Moscow, Energiya Publ., 1980, 360 p.
  13. Mirtskhulava Ts.E. Razmyv rusel i metodika otsenki ikh ustoychivosti [Erosion of River Beds and Methods of Assessment of Their Stability]. Moscow, Kolos Publ., 1967, 177 p.
  14. Volynov M.A. Propusknaya sposobnost’ samoformiruyushchikhsya rechnykh rusel [Capacity of Self-forming River Beds]. Prirodoobustroystvo [Nature Management]. 2011, no. 5, pp. 66—71.
  15. Baykov V.N., Borovkov V.S., Volynov M.A., Pisarev D.V. Lokal’noe kinematicheskoe podobie techeniya i raspredelenie skorostey v rechnykh potokakh [Local Kinematic Similarity of the Current and Velocity Distribution in River Flows]. Inzhenerno-stroitel’nyy zhurnal [Civil Engineering Journal]. 2012, no. 6 (32), pp. 12—19.
  16. Alkaeva A.B., Donenberg V.M., Kvasova I.T. Usloviya predel’noy ustoychivosti chastits nesvyaznogo grunta na dne turbulentnogo potoka [Conditions of the Limit Stability of Particles of Non-cohesive Soils on the Bottom of a Turbulent Flow]. Izvestiya VNIIG im. B.E. Vedeneeva [Proceedings of All-Soviet Research Institute of Hydraulics named after B.E. Vedeneev]. 1978, vol.126, pp. 22—29.
  17. Grishin N.N. Mekhanika pridonnykh nanosov [Mechanics of Natural Drifts]. Moscow, Nauka Publ., 1982, 160 p.
  18. Grishanin K.V. Dinamika ruslovykh potokov [Dynamics of Bed Flows]. Leningrad, Gidrometeoizdat Publ., 1969, 427 p.
  19. Knoroz V.S. Nerazmyvayushchaya skorost’ dlya nesvyaznykh gruntov i faktory ee opredelyayushchie [Non-erosive Velocity for Non-cohesive Soils and Its Determinant Factors]. Izvestiya VNIIG im. B.E. Vedeneeva [Proceedings of All-Soviet Research Institute of Hydraulics named after B.E. Vedeneev]. 1958, vol. 59, pp. 62—81.

Download

SCIENTIFIC SUPPORT OF SURVEY, DESIGN, CONSTRUCTION AND OPERATION OF THE MOTHER OF GOD DITCH OF SERAPHIMO-DIVEEVSKY MONASTERY

Vestnik MGSU 1/2018 Volume 13
  • Chernyshev Sergey Nikolaevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Geological and Mineralogical Sciences, Professor, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Darchiya Valentina Ivanovna - Moscow State University of Civil Engineering (National Research University) (MGSU) Junior research worker, Research Institute of Construction Materials and Technologies, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Kofanov Andrey Viktorovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Philosophical Sciences, Associate Professor, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Tazina Natalia Georgievna - Higher Education “Russian Timiryazev State Agrarian University (HE RT SAU) Candidate of Agricultural Sciences, Associate Professor, Department of Crop Research and Grassland Ecosystems, Higher Education “Russian Timiryazev State Agrarian University (HE RT SAU), 49 Timiryazevskaya st., Moscow, 127550, Russian Federation.
  • Timofeev Daniil Viktorovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Postgraduate student, Department Heat and Ventilation, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; daniil@fastmail.fm.

Pages 95-106

Subject: the article describes the structure, technologies of construction, gardening and exploitation of the Holy Trinity Seraphimo-Diveevsky Monastery - the ancient linear fortification consisting of a ditch and an earth embankment that is located directly above the ditch. Research objectives: ensure the stability of slopes, create a technique for gardening of steep slopes in difficult microclimatic conditions, ensure drainage of water. Materials and methods: the computational techniques were used to ensure stability of slopes, and experimental techniques were applied for their phyto-fixation; geosynthetics, rebar grids, varietal herbs, gooseberries and thuja were used. Results: for recreation of the unique structure, a special set of design, survey and construction works was developed, as well as works to maintain the structure during its exploitation. In particular, we have developed the method of detection of the recreated ditch based on the stratification of bulk soils by their age; the methods for fastening the slopes; lawn grass mixture formula for slopes with angles of 45° and 65°; drainage system. Conclusions: owing to the research work, for the first time this construction was completed with the required parameters, while the earlier recreation attempts failed due to erosion and landslide processes. The developed methods can be applied for recreation of other ancient defensive fortifications on the fields of great battles and for landscaping the territories with complex relief.

DOI: 10.22227/1997-0935.2018.1.95-106

Download

Results 1 - 4 of 4