DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

PECULIARITIES OF DESIGN OF CURTAIN WALL SYSTEMS TO ASSURE THERMAL INSULATION

Vestnik MGSU 3/2012
  • Golunov Sergej Anatolevich - Moscow State University of Civil Engineering (MSUCE) Deputy Director, Scientific and Research Institute of Construction Materials and Technologies 8 (495) 789-16-49, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoeshosse, Moscow, 129337, Russia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 51 - 56

Power efficiency of residential houses requires the application of varied thermal insulation systems, including curtain walls. Peculiarities of their design that can produce a substantial impact on their durability and operational reliability are discussed in the article.
A standard curtain wall system represents a structure composed of one layer of thermal insulation made of mineral cotton attached to the bearing wall by dish-shaped dowels, a bearing frame (a subsystem) attached to the wall by anchors, and outer lining materials (panels, boards or sheets) that are mounted in such a manner so that the spacing between the outer lining and the layer of thermal insulation is 0.4 to 0.8 m.
Evidently, strength analysis of structural and fixture elements (anchors) must be completed in the course of the building design (new project) or as a supplementary pre-repair stage in the event of extensive repairs, to assure reliable and safe operation of curtain wall systems. Any analysis is to be based on the most complete information about the materials and elements of the curtain wall system, its structural peculiarities, and the whole variety of loads and impacts that the building may be exposed to, including dynamic loads associated with its height. The quality of the analysis depends upon proper identification of the forces that the structure of the wall system is exposed to, and proper selection of design models of elements (namely, with the account for the kinematic analysis) of the structure of the curtain wall system being designed.
Evidently, many factors of strength of structural details, elements and joints must be substantiated by tests that may be specified as procedures of identification of structural reliability of a curtain wall system. Besides, the analysis-related section of the design project must be based on a set of tests (of separate elements and joints) performed in the environment close to the natural conditions of the curtain wall maintenance (field tests).
The results of laboratory tests (given the adjustments for permissible tolerances) may be regarded as the principal criteria in the assessment of applicability of a curtain wall system in the course of a major building repair project or a new construction to assure the required reliability and durability.

DOI: 10.22227/1997-0935.2012.3.51 - 56

References
  1. STO FCS – 44416204-010—2010. Krepleniya ankernye. Metod opredeleniya nesuschey sposobnosti po rezul’tatam naturnyh ispytaniy [Standard of Organization (FGU FCS– 44416204-010-2010). Anchors. Method of Testing for Determination of the Bearing Capacity as a Result of Field Tests], Moscow, 2010.
  2. MDS 20-1.2006. Vremennye rekomendacii ponaznacheniyu nagruzok i vozdeystviy, deystvujuschih na mnogofunkcional’nye vysotnye zdaniya i kompleksy v Moskve. [Local Moscow Construction Code.Temporary Recommendation for Fixing of Loads and Influences on Multifunctional High-Rise buildings in Moscow], Moscow, 2006.

Download

Suction piles in thepresent-day hydraulic engineering

Vestnik MGSU 9/2013
  • Levachev Stanislav Nikolaevich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Hydraulic Engineering Construction, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Khaletskiy Valentin Stanislavovich - Moscow State University of Civil Engineering (MGSU) master student, Department of Hydraulic Engineering Structures; +7 (915) 343–81–73., Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 86-94

Presently, offshore projects have moved to a new level. Advanced technologies are employed to develop those oil and gas deposits that were inaccessible in the past. SPAR and FPSO platforms are used to develop deposits at a depth of over 2,000 meters. Versatile technologies, including suction piles, represent a major factor of successful implementation of these projects.Renewable energy sources arouse more interest. Wind energy is a most ambitions area of research. Wind farms may be installed along the coastline or a shelf. Today many offshore projects are implemented using renewable energy sources. Presently, wind power generators represent sophisticated structures having blades with a diameter of up to 150 m. One of the main objectives is to have them strongly attached to the seabed. Suction piles are often used to solve this task. Suction piles minimize the work at sea, and they are used to install both fixed and floating platforms. The authors consider modern constructions used in similar projects and present the history of suction piles and their use in different offshore projects. The authors also analyze the most recent developments in the area of anchor design for suction piles.The area of research covered in the article is highly relevant. Anchors and foundations based on suction piles can be widely used to develop offshore projects in Russia.

DOI: 10.22227/1997-0935.2013.9.86-94

References
  1. Dean E.T.R. Offshore Geotechnical Engineering. Principles and Practice. 2010, pp. 296—297, 299, 405—407.
  2. Andersen K.H., Jostad H.P. Exploration and Production – Oil and Gas Review 2007. Suction Anchor Technology’s Contribution to Offshore Oil Recovery, pp. 54—55.
  3. Havard Devold Oil and Gas Production Handbook. 2006, pp. 9—11.
  4. Thomsen J.H., Forsberg T., Bittner R. Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering. Offshore Wind Turbine Foundations – the Cowi Experience. 2007, pp. 7—8.
  5. Henderson A.R., Patel M.H. On the Modeling of a Floating Offshore Wind Turbine. Wind Energy Journal. 2003, pp. 53—86.
  6. Musial W., Butterfield S., Boone A. Feasibility of Floating Platform Systems for Wind Turbines. 2004, pp. 2—7.
  7. Yong Bai, Qiang Bai. Subsea Structural Engineering. 2010, pp. 130—131.

Download

Interaction of anchors and the surrounding soil with accountfor elastic-plastic properties

Vestnik MGSU 7/2015
  • Ter-Martirosyan Zaven Grigor’evich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Science, Professor of the Department of Soil Mechanics and Geotechnics, Main Researcher at the Research and Education Center “Geotechnics”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Avanesov Vadim Sergeevich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Soil Mechanics and Geotechnics, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 287-49-14 (ext. 14-25); This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 47-56

In this paper the problem of interaction between grouted anchor and the surrounding soil body with account for its elastic-plastic properties is solved by analytical and numerical methods. Tensile loads are exerted on a grouted anchor placed in homogeneous soil body. Under ultimate loads occurs the failure of the system “anchor-surrounding soil”. This research is based on the elastic-plastic model designed by Timoshenko. The problem of interaction between grouted anchor and the surrounding soil is solved in various design conditions, such as constant structural shear strength, account for anchor stiffness, linear variable structural shear strength. The solutions of these problems can be used for quantitative estimation of the stress-strain state of the system. This estimation makes it possible to calculate the displacements of anchors and their bearing capacity. It is shown that displacements significantly depend on physico-mechanical properties of the surrounding soil, geometrical properties of the anchor, selection of design model. The analysis demonstrates that load-displacement curve has clear nonlinearity and unrestrictedly increases at approaching the ultimate stress. The account for anchor stiffness insignificantly influences the obtained solutions and account for it may be neglected. The obtained equations also show that the displacement of the anchor increases with widening of the diameter at constant dimensional ratio of the cylindrical model. It is demonstrated that the ultimate uplift capacity is dependent on the dimensions of anchors and physico-mechanical properties of soil. Analytical solutions are compared to the results of the Finite Element Analysis (FEA) in the computer program Plaxis. The comparison of analytical and numerical solutions has close precision for the magnitude of anchor displacement and ultimate loads.

DOI: 10.22227/1997-0935.2015.7.47-56

References
  1. Chim-oye W., Marumdee N. Estimation of Uplift Pile Capacity in the Sand Layers. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies. 2013, vol. 4, no. 1, pp. 57—65.
  2. Yimsiri S., Soga K., Yoshizaki K., Dasari G.R., O’Rourke T.D. Lateral and Upward Soil-Pipeline Interactions in Sand for Deep Embedment Conditions. Journal of Geotechnical and Geoenvironmental Engineering. 2004, vol. 130, no. 8, pp. 830—842. DOI: http://dx.doi.org/10.1061/(ASCE)1090-0241(2004)130:8(830).
  3. Zhang B., Benmokrane B., Chennouf A., Mukhopadhyaya P., El-Safty P. Tensile Behavior of FRP Tendons for Prestressed Ground Anchors. Journal of Composites for Construction. 2001, vol. 5, no. 2, pp. 85—93. DOI: http://dx.doi.org/10.1061/(ASCE)1090-0268(2001)5:2(85).
  4. Hoyt R.M., Clemence S.P. Uplift Capacity of Helical Anchors in Soil. 12th International Conference on Soil Mechanics and Foundation Engineering. 1989, 12 p.
  5. Hanna A., Sabry M. Trends in Pullout Behavior of Batter Piles in Sand. Proceeding of the 82 Annual Meeting of the Transportation Research Board. 2003, 13 p.
  6. Thorne C.P., Wang C.X., Carter J.P. Uplift Capacity of Rapidly Loaded Strip Anchors in Uniform Strength Clay. Geotechnique. 2004, vol. 54, no. 8, pp. 507—517. DOI: http://dx.doi.org/10.1680/geot.2004.54.8.507
  7. Young J. Uplift Capacity and Displacement of Helical Anchors in Cohesive Soil. A Thesis submitted to Oregon State University, 2012. Available at: http://hdl.handle.net/1957/29487. Date of access: 11.05.2015.
  8. Briyo J.L., Pauers U.F., Uezerbay D.I. Dolzhny li in”ektsionnye gruntovye ankery imet’ nebol’shuyu dlinu zadelki tyagi? [Should Grouted Anchors Have Short Tendon Bond Length?]. Geotekhnika [Geotechnical Engineering]. 2012, no. 5, pp. 34—55. (In Russian)
  9. Briaud J.L., Griffin R., Yeung A., Soto A., Suroor A., Park H. Long-Term Behavior of Ground Anchors and Tieback Walls. Texas A&M Transportation Institute, 1998, 280 p.
  10. Vyalov S.S. Reologicheskie osnovy mekhaniki gruntov [Rheological Principles of Soil Mechanics]. Moscow, Vysshaya shkola Publ., 1978, 447 p. (In Russian)
  11. Sabatini P.J., Pass D.G., Bachus R.C. Ground Anchors and Anchored Systems. Geotechnical Engineering Circular no. 4. 1999, 281 p.
  12. Barley A.D., Windsor C.R. Recent Advances in Ground Anchor and Ground Reinforcement Technology with Reference to the Development of the Art. GeoEng. 2000, vol. 1, pp. 1048—1095.
  13. Copstead R.L., Studier D.D. An Earth Anchor System: Installation and Design Guide. United States Department of Agriculture. 1990, 35 p.
  14. Zheng J.J., Dai J.G. Prediction of the Nonlinear Pull-Out Response of FRP Ground Anchors Using an Analytical Transfer Matrix Method. Engineering Structures. 2014, vol. 81, pp. 377—985. DOI: http://dx.doi.org/10.1016/j.engstruct.2014.10.008.
  15. Azari B., Fatahi B., Khabbaz H. Assessment of the Elastic-Viscoplastic Behavior of Soft Soils Improved with Vertical Drains Capturing Reduced Shear Strength of a Disturbed Zone. International Journal of Geomechanics. 2014, vol. 40, 15 p. Available at: http://www.researchgate.net/publication/271273415_Assessment_of_the_Elastic-Viscoplastic_Behavior_of_Soft_Soils_Improved_with_Vertical_Drains_Capturing_Reduced_Shear_Strength_of_a_Disturbed_Zone. Date of access: 11.05.2015. DOI: http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000448 , B4014001.
  16. Timoshenko S.P., Goodier J.N. Theory of Elasticity. N.Y. : McGraw&Hill, 1970, 608 p.
  17. Ter-Martirosyan Z.G., Ter-Martirosyan A.Z. Reologicheskie svoystva gruntov pri sdvige [Rheological Properties of Soils while Shearing]. Osnovaniya, fundamenty i mekhanika gruntov [Bases, Foundations and Soil Mechanics]. 2012, no. 6, pp. 9—13. (In Russian)
  18. Ter-Martirosyan Z.G., Nguen Zang Nam. Vzaimodeystvie svay bol’shoy dliny s neodnorodnym massivom s uchetom nelineynykh i reologicheskikh svoystv gruntov [Interaction of Long Piles with a Heterogeneous Massif with Account for Non-linear and Rheological Properties of Soils]. Vestnik MGSU [Proceedings of Moscow Stte University of Civil Engineering]. 2008, no. 2, pp. 3—14. (In Russian)
  19. Ter-Martirosyan Z.G., Avanesov V.S. Vzaimodeystvie ankerov s okruzhayushchim gruntom s uchetom polzuchesti i strukturnoy prochnosti [Interaction between Anchors and Surrounding Soil with Account for Creep and Structural Shear Strength]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 10, pp. 75—86. (In Russian)
  20. Ter-Martirosyan Z.G. Mekhanika gruntov [Soil Mechanics]. Moscow, ASV Publ, 2009, 550 p. (In Russian)
  21. Dinakar K.N., Prasad S.K. Behaviour of Tie Back Sheet Pile Wall for Deep Excavation Using Plaxis. International Journal of Research in Engineering and Technology. 2014, vol. 3, no. 6, pp. 97—103.

Download

Interaction between anchors and surrounding soil with account for creep and structural shear strength

Vestnik MGSU 10/2014
  • Ter-Martirosyan Zaven Grigor’evich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Science, Professor of the Department of Soil Mechanics and Geotechnics, Main Researcher at the Research and Education Center “Geotechnics”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Avanesov Vadim Sergeevich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Soil Mechanics and Geotechnics, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 287-49-14 (ext. 14-25); This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 75-86

Interaction between grouted prestressed anchor and surrounding soil body with account for creep and structural shear strength is investigated in this paper. The behavior of the system is described by the modified rheological Bingham-Shvedov equation. It is shown that fixation of initial tension or its periodical variation causes problem of anchor creep and stability, and fixation of initial displacement causes initial stress relaxation of the system “surrounding soil body - anchor - tendon”. The relaxation time significantly depends on elastic-viscoplastic properties of surrounding soil, diameter and length of anchor and tendon, and its elasticity. Account for viscoplastic properties of soil with the structural shear strength leads to residual stresses in the system. The solutions of these problems can be used for quantitative estimation for stress-strain state of the system. This estimation makes it possible to calculate long-term deformation and bearing capacity of anchors, stress relaxation and residual stresses. The problem of interaction between anchor and the surrounding soil is solved in this paper. It is shown that displacement of anchor and stresses in the soil depends on different parameters, such as soil properties, geometrical properties of the anchor, selection of design model and account for ultimate stiffness of the anchor. Also this solution is basic for problems of creep and stress relaxation in the system. The process of formation of the stress-strain state around the anchor could demonstrate decaying, constant or progressive velocity highly depending on rheological processes in the soil body that may at the same time be accompanied by hardening and softening processes.

DOI: 10.22227/1997-0935.2014.10.75-86

References
  1. Levachev S.N., Haletskiy V.S. Ankernye i yakornye ustroystva v gidrotekhnicheskom stroitel’stve [Tie and Anchor Devices in Hydraulic Engineering]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 5, pp. 58—68. (in Russian)
  2. Sabatini P.J., Pass D.G., Bachus R.C. Ground Anchors and Anchored Systems. Geotechnical Engineering Circular. 1999, no. 4, 281 p.
  3. Barley A.D., Windsor C.R. Recent Advances in Ground Anchor and Ground Reinforcement Technology with Reference to the Development of the Art. GeoEng. 2000, vol. 1: Invited papers, pp. 1048—1095.
  4. Copstead R.L., Studier D.D. An Earth Anchor System: Installation and Design Guide. United States Department of Agriculture. 1990, 35 p.
  5. Chim-oye W., Marumdee N. Estimation of Uplift Pile Capacity in the Sand Layers. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies. 2013, vol. 4, no. 1, pp. 57—65.
  6. Yimsiri S., Soga K., Yoshizaki K., Dasari G.R., O’Rourke T.D. Lateral and Upward Soil-Pipeline Interactions in Sand for Deep Embedment Conditions. Journal of Geotechnical and Geoenvironmental Engineering. 2004, vol. 130, issue 8, pp. 830—842. DOI: http://dx.doi.org/10.1061/(ASCE)1090-0241(2004)130:8(830).
  7. Zhang B., Benmokrane B., Chennouf A., Mukhopadhyaya P., El-Safty P. Tensile Behavior of FRP Tendons for Prestressed Ground Anchors. Journal Of Composites For Construction. 2001, vol. 5, no. 2, pp. 85—93. DOI: http://dx.doi.org/10.1061/(ASCE)1090-0268(2001)5:2(85).
  8. Hoyt R.M., Clemence S.P. Uplift Capacity of Helical Anchors in Soil. 12th International Conference on Soil Mechanics and Foundation Engineering. 1989, 12 p.
  9. Hanna A., Sabry M. Trends in Pullout Behavior of Batter Piles in Sand. Proceeding of the 82 Annual Meeting of the Transportation Research Board. 2003, 13 p.
  10. Thorne C.P., Wang C.X., Carter J.P. Uplift Capacity of Rapidly Loaded Strip Anchors in Uniform Strength Clay. Geotechnique. 2004, vol. 54, no. 8, pp. 507—517.
  11. Young J. Uplift Capacity and Displacement of Helical Anchors in Cohesive Soil. A Thesis Submitted to Oregon State University, 2012. Available at: http://hdl.handle.net/1957/29487. Date of access: 25.06.2014.
  12. Briaud J.L., Powers W.F., Weatherby D.E. Dolzhny li in”ektsionnye gruntovye ankery imet’ nebol’shuyu dlinu zadelki i tyagi? [Should Grouted Anchors Have Short Tendon Bond and Rod Length?]. Geotekhnika [Geotechnics]. 2012, no. 5, pp. 34—55. (in Russian)
  13. Ter-Martirosyan Z.G., Ter-Martirosyan A.Z. Reologicheskie svoystva gruntov pri sdvige [Rheological Properties of Soils while Shearing]. OFMG [Bases, Foundations and Soil Mechanics]. 2012, no. 6, pp. 9—13. (in Russian)
  14. Ter-Martirosyan Z.G., Nguyen Giang Nam. Vzaimodeystvie svay bol’shoy dliny s neodnorodnym massivom s uchetom nelineynykh i reologicheskikh svoystv gruntov [Interaction between Long Piles and a Heterogeneous Massif with Account for Non-linear and Rheological Properties of Soils]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2008, no. 2, pp. 3—14. (in Russian)
  15. Ter-Martirosyan Z.G. Mekhanika gruntov [Soil Mechanics]. Moscow, ASV Publ., 2009, 550 p. (in Russian)

Download

Results 1 - 4 of 4