SAFETY OF BUILDING SYSTEMS. ECOLOGICAL PROBLEMS OF CONSTRUCTION PROJECTS. GEOECOLOGY

The possibility of applying the single-sludge denitri-nitrification system in reconstruction of wastewater treatment plants in the Russian Federation

Vestnik MGSU 10/2013
  • Gogina Igor Alekseevich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Waste Water Treatment and Water Ecology, Vice Rector for Teaching and Studies, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Gul'shin Igor Alekseevich - Moscow State University of Civil Engineering (MGSU) student, Senior Assistant, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 166-174

In Russia the standards for wastewater discharge have increased in the nineties of the twentieth century, and the main question was the removal of nutrients. In recent years there have been many studies in order to develop new methods of wastewater treatment, and to adopt Western technologies in Russian treatment plants. But the main problem now is that most of the plants in Russia were built more than thirty years ago. And now they need reconstruction. It requires great financial investments, but the possibilities are limited. Therefore it is necessary to reconstruct with minimal expenses, maximum usage of existing tanks and equipment, and the quality of wastewater treatment satisfying the standards. In Moscow State University of Civil Engineering (MGSU) extensive researches are carried out in the field of biological wastewater treatment, including the removal of nutrients. The results of the researches were used for constructions and reconstructions of treatment plants in Russia.Technological Scheme «Deep biological wastewater treatment system with ammonium-nitrogen removal», which was developed and patented in MGSU, treats wastewater biologically in the aeration tank, which is divided into a sequence of alternating anoxic and aerobic zones. The reconstruction of biological treatment plants under this Scheme is possible at minimal cost, and the quality of treatment satisfies the modern standards.Nowadays, in the Russian Federation there are about sixty two percent of plants with aeration tanks, thirty three percent of biofiltration plants, and five percent of the plants with only mechanical treatment. The main task of the present research was to investigate the possibility of applying single-sludge denitri-nitrification system in the reconstruction of wastewater treatment plants in the Russian Federation. Only plants with aeration tanks were studied, because only they can be reconstructed with the use of the Scheme.The research includes fifty three treatment plants of different Russian cities. According to the questionnaires the data for each treatment plant has been received. The date concerns influents and effluents, the features of a construction and operation of the structures at a station and the data about the cost of aeration in the aeration tanks and so on. The location of the studied treatment plants can be found on the map present in the article.From the initial data the basic parameters of the aeration tanks were calculated, including the amount of air required for denitrification and nitrification. The calculation of the required air amount has been carried out using the method developed in MGSU. This method includes both normative calculations and practical experience of operating procedure of the aeration tanks (working with the single-sludge denitri-nitrification scheme). The results of the calculations were compiled for further analysis.According to the analysis, sixty five percent of the studied wastewater treatment plants may be reconstructed according to the single-sludge denitri-nitrification scheme. It will lead to a serious improvement of wastewater treatment quality.It is important to note, that the calculations were made on the basis of air amount produced by the existing station`s blowers. Therefore reconstructions don`t require replacement of blowers and can be done stage-by-stage.

DOI: 10.22227/1997-0935.2013.10.166-174

References
  1. Ponamoreva L.S. Rekomendatsii po primeneniyu «Metodiki razrabotki normativov dopustimykh sbrosov veshchestv i mikroorganizmov v vodnye ob"ekty dlya vodopol'zovateley» [Recommendations for Applying the Methods of Development of the Standards of Admissible Substances and Microorganisms Discharge into Water Objects for Water Users]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Technique]. 2009, no. 2, pp. 4—15.
  2. Salomeev V.P., Gogina E.S., Makisha N.A. Reshenie voprosov udaleniya biogennykh elementov iz bytovykh stochnykh vod [The Solution of the Problem of Nutrient Removal from Wastewater]. Vodosnabzhenie i kanalizatsiya [Water Supply and Sewerage]. 2011, vol. 2, no. 3, pp. 44—53.
  3. Gogina E.S., Kulakov A.A. Razrabotka tekhnologii modernizatsii iskusstvennoy biologicheskoy ochistki stochnykh vod [Development of the Technology for the Modernization of Artificial Biological Wastewater Treatment]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 11, pp. 204—209.
  4. Gao Shun Qiu, Ling Feng Qiu, Jian Zhang, Yi Ming Chen. Research on Intensive Nutrients Removal of the Low C/N Sewage. Advanced Materials Research. 2012, no. 550— 553, pp. 2142—2145.
  5. Lawrence K. Wang, Nazih K. Shammas. Single-Sludge Biological Systems for Nutrients Removal. Handbook of Environmental Engineering. 2009, no. 9, pp. 209—270.
  6. Cherlys Infantea, Ivan Leonb, July Florezb, Ana Zarateb, Freddy Barriosa, Cindy Zapataa. Removal of ammonium and phosphate ions from wastewater samples by immobilized Chlorella sp. International Journal of Environmental Studies. 2013, vol. 7, no. 1, pp. 1—7.
  7. Kozlov M.N., Khar'kina O.V., Pakhomov A.N., Strel'tsov S.A., Khamidov M.G., Ershov B.A., Belov N.A. Opyt ekspluatatsii sooruzheniy biologicheskoy ochistki stochnykh vod ot soedineniy azota i fosfora [Operating Experience of Biological Treatment of Wastewater from the Nutrients]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Technique]. 2010, no. 10, ch. 1, pp. 35—41.
  8. Salomeev V.P., Gogina E.S. Primenenie odnoilovoy sistemy denitrifikatsii dlya rekonstruktsii biologicheskikh ochistnykh sooruzheniy [The Usage of the Single-sludge Denitrification System for Reconstruction of Biological Wastewater Treatment Plants]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2009, no. 3, pp. 129—135.

Download

DEVELOPMENT OF TECHNOLOGY OF MODERNIZATION OF BIOLOGICAL WASTEWATER TREATMENT PLANTS

Vestnik MGSU 11/2012
  • Gogina Elena Sergeevna - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Waste Water Treatment and Water Ecology, +7 (495) 730-62-53, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kulakov Artem Alekseevich - Vologda State University (VoGU) Candidate of Technical Sciences, Associate Professor of the Department of Water supply and Waste Water Treatment, Vologda State University (VoGU), 15 Lenina str., Vologda, 160000, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 204 - 209

This paper addresses the biological treatment of wastewater associated with removal of nitrogen.
Results of laboratory experiments that involve nitrification and denitrification are also presented
and analyzed in the paper.
Discharges of inadequately treated and untreated wastewater have a negative impact on
the aquatic ecosystem. The biological treatment of the wastewater that includes denitrification is
strongly influenced by external factors. They need thorough research at the stage of design of water
treatment facilities.
The objective of this research is development of effective construction technologies on the
basis of experimental studies with a view to the modernization of biological wastewater treatment facilities.
The analysis of the latest scientific papers on water treatment demonstrates that the singlesludge
nitrification and denitrification technology is the most effective and the simplest one in terms
of its implementation.
The studies were conducted at the research laboratory of Moscow State University of Civil
Engineering. The laboratory facilities make it possible to perform the processes of nitrification, denitrifiation and sedimentation. The composition of the wastewater used in the experiment was close
to that of the natural wastewater.
Optimal process parameters of a wastewater treatment plant, including capacities of nitrification
and denitrification tanks and concentrations of nitrate required for effective biological removal
of phosphorus, were identified in the laboratory. Positive results were obtained in terms of removal
of organic compounds and nutrients. The technology of nitrogen removal from the wastewater was
developed. The proposed technology of modernization of biological wastewater treatment facilities
is based on conversion of existing aeration capacities into nitrification and denitrification zones, and
it does not include construction of any new premises.

DOI: 10.22227/1997-0935.2012.11.204 - 209

References
  1. Kulakov A.A., Lebedeva E.A., Umarov M.F. Issledovanie bar’ernykh vozmozhnostey traditsionnoy biologicheskoy ochistki stochnykh vod na osnove tekhnologicheskogo modelirovaniya [Research of Barrier Strengths of Conventional Technologies of Biological Treatment Based on Technology Simulation]. Ekologiya i promyshlennost’ Rossii [Ecology and Industry of Russia]. 2010, no. 11, pp. 33—36.
  2. Gogina E.S. Udalenie biogennykh elementov iz stochnykh vod [Removal of Biogenic Elements from Wastewater]. Moscow, ASV Publ., 2010, 120 p.
  3. Salomeev V.P., Gogina E.S. Primenenie odnoilovoy sistemy denitrifikatsii dlya rekonstruktsii biologicheskikh ochistnykh sooruzheniy [Application of a Single Silt Denitrification Technology in Restructuring of Biological Water Treatment Facilities]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2009, no. 3, pp. 129—135.
  4. Doklad o sostoyanii i okhrane okruzhayushchey sredy Vologodskoy oblasti v 2009 godu [Report on Condition and Protection of the Environment in the Vologda Region in 2009]. Pravitel’stvo Vologodskoy oblasti, departament prirodnykh resursov i okhrany okruzhayushchey sredy Vologodskoy oblasti [Vologda Region Government, Department of Natural Resources and Environmental Protection]. Vologda, 2010, 236 p.
  5. Kulakov A.A., Lebedeva E.A. Razrabotka inzhenernykh resheniy po modernizatsii ochistnykh sooruzheniy kanalizatsii na osnove tekhnologicheskogo modelirovaniya [Development of Engineering Solutions concerning Modernization of Wastewater Treatment Facilities Based on Technology Simulation]. Vodoochistka [Water Treatment]. 2011, no. 12, pp. 10—19.
  6. Gogina E.S. Issledovanie tekhnologicheskoy skhemy biologicheskoy ochistki stochnykh vod dlya rekonstruktsii ochistnykh sooruzheniy [Research of the Process Scheme of Biological Treatment of Wastewater within the Framework of Restructuring of WWTPs]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Engineering]. 2011, no. 11, pp. 25—33.
  7. Gogina E.S. Optimizatsiya protsessa udaleniya soedineniy azota iz bytovykh stochnykh vod [Optimization of the Process of Removal of Nitrogen Compounds from Domestic Wastewater]. Moscow, MGSU Publ., 2000, 21 p.

Download

Results 1 - 2 of 2