ECONOMICS, MANAGEMENT AND ORGANIZATION OF CONSTRUCTION PROCESSES

Functional modeling of construction organization in emergency situations

Vestnik MGSU 10/2013
  • Fedoseeva Tatiana Aleksandrovna - Moscow State University of Civil Engineering (MGSU) Assistant, Department of Information Systems, Technologies and Automation in Construction, Moscow State University of Civil Engineering (MGSU), 26, Yaroslavskoye shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 272-277

The main purpose of construction organization (CO) is putting an object of a required quality into operation within the established time limit with the lowest labor and resources input. This aim remains relevant also in emergency situations. However, apart from the main tasks of CO in emergencies, there are additional challenges to stabilize and arrange construction works, reduce the impact of emergency situations and their results. Due to the lack of information about the domain objects in emergency situations the complexity of formulating and dealing with management problems increases. This provokes rebuilding of the manufacturing processes of a construction enterprise in order to adapt them to the new conditions and to optimize the results obtained in these conditions. Fast and efficient decisions based on the functional model of the components and processes will improve the efficiency of CO in emergency situations.The essence of the model proposed by the author is that the tasks of the CO are divided into conditional permanent and conditional variable. The functioning of conditional permanent tasks remain unchanged in emergency situations, but conditional variable depend on the emergency. Their composition is determined by the construction characteristics. The resulting sets of tasks are ranked by priority. A higher priority is assigned to the tasks of operational planning of the building production rehabilitation by restructuring the production processes disturbed in emergency situations.

DOI: 10.22227/1997-0935.2013.10.272-277

References
  1. Volkov A.A. Kompleksnaya bezopasnost' zdaniy i sooruzheniy v usloviyakh ChS: formal'nye osnovaniya situatsionnogo modelirovaniya [Integrated Safety of Buildings and Structures in Emergency Situations: Formal Foundations of Situational Modeling]. Obsledovanie, ispytanie, monitoring i raschet stroitel'nykh konstruktsiy zdaniy i sooruzheniy: Sbornik nauchnykh trudov [Inspection, Testing, Monitoring and Calculation of Constructions and Structures: Collection of Works]. Moscow, ASV Publ., 2010, pp. 55—62.
  2. Volovik M.V., Ershov M.N., Ishin A.V., Lapidus A.A., Lyang O.P., Telichenko V.I., Tumanov D.K., Fel'dman O.A. Sovremennye voprosy tekhnologicheskikh i organizatsionnykh meropriyatiy na stroitel'nom proizvodstve [Contemporary Issues of Technological and Organizational Measures for Building Production]. Tekhnologiya i organizatsiya stroitel'nogo proizvodstva [Technology and Organization of the Construction Industry]. 2013, no. 2(3), pp. 12—17.
  3. Il'in N.I., Novikova E.V., Demidov N.N. Situatsionnye tsentry. Opyt, sostoyanie, tendentsii razvitiya [Situational centers. Experience, State and Trends of Development]. Moscow, MediaPress Publ, 2011.
  4. Volkov A.A, Lebedev V.M. Proektirovanie sistemokvantov rabochikh operatsiy i trudovykh stroitel'nykh protsessov v srede informatsionnykh tekhnologiy [Designing of the System Quanta of Working Operations and Labor Building Processes in the IT environment]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 2, pp. 293—296.
  5. Volkov A.A. Intellekt zdaniy: formula [Intelligence of Buildings: Formula]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2012, no. 3, pp. 54—57.
  6. Volkov A.A. Gomeostat stroitel'nykh ob"ektov. Chast' 3. Gomeostaticheskoe upravlenie [Homeostat of Construction Projects. Part 3. Homeostatic Management]. Stroitel'nye materialy, oborudovanie, tekhnologii XXI veka [Building Materials, Equipment, Technologies of the 21st century]. 2003, no. 2, pp. 34—35.
  7. Volkov A.A., Yarulin R.N. Avtomatizatsiya proektirovaniya proizvodstva remontnykh rabot zdaniy i inzhenernoy infrastruktury [Computer-Aided Design of Repairs of Buildings and the Engineering Infrastructure]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 9, pp. 234—240.
  8. Volkov A.A., Sedov A.V., Chelyshkov P.D., Sukneva L.V. Geograficheskaya informatsionnaya sistema (atlas) al'ternativnykh istochnikov energii [Atlas: Geographic Information System of Alternative Sources of Energy]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no.1, pp. 213—217.
  9. Volkov A. Building Intelligence Quotient: Mathematical Description. Applied Mechanics and Materials (Trans Tech Publications, Switzerland). 2013, vol. 409—410, pp. 392—395.
  10. Volkov A.A., Ignatov V.P. Myagkie vychisleniya v modelyakh gomeostata stroitel'nykh ob"ektov [Soft Computing of the Homeostat Models of Buildings] Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 2. pp. 279—282.
  11. Volkov A.A. Udalennyy dostup k proektnoy dokumentatsii na osnove sovremennykh telekommunikatsionnykh tekhnologiy [Remote Access to Project Documents on the Basis of Advanced Telecommunications Technologies]. Stroitel'nye materialy, oborudovanie, tekhnologii XXI veka [Building Materials, Equipment, Technologies of the 21st century]. 2000, no 4, p. 23.
  12. Ginzburg A.V., Kagan P.B. SAPR organizatsii stroitel'stva [CAD in Construction Organization]. SAPR i grafika [CAD and Graphics]. 1999, no. 9, pp. 32—34.

Download

SYSTEM ENGINEERING OF FUNCTIONAL MODELING OF INTELLIGENT BUILDINGS

Vestnik MGSU 10/2015
  • Volkov Andrey Anatol’evich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Rector, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Batov Evgeniy Igorevich - Moscow State University of Civil Engineering (National Research University (MGSU) postgraduate student, Department of Information Systems, Technology and Automation in Construction, Moscow State University of Civil Engineering (National Research University (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 188-193

The authors’ scientific hypothesis is that a selection of the most appropriate smart building solution for a particular building can be done properly only using functional modeling. “Intelligent” building was examined from the point of view of systems theory and cybernetics for the purpose of identifying essential factors which should be taken into account in functional modeling. The goal of an “intelligent” building, as a system, was identified as a continuous adaptation to the building occupants’ life-cycle. Building Intelligence Quotient serves the purpose of a quantification of the system’s goal. The system state is a set of building parameters which can be measured by sensors and meters. Two main factors that influence the changes of the system state are: occupants’ activities and outside environment changes. A functional model of an “intelligent” building should be able to provide the ability to simulate such influence. Based on the conducted system analysis, system engineering principles, which can be particularly helpful for a functional model development of “intelligent” buildings, were selected: the principle of a functional system, the probabilistic-statistical principle, the principle of simulation modeling, the principle of interactive graphics, the feasibility study principle.

DOI: 10.22227/1997-0935.2015.10.188-193

References
  1. Ashby W.R. An Introduction to Cybernetics. Second Impression. London, Chapman & Hall Ltd, 1957, pp. 86—93.
  2. Surmin Yu.P. Teoriya sistem i sistemnyy analiz [Theory of Systems and System Analysis]. Kiev, MAUP Publ., 2003, p. 64. (In Russian)
  3. Volkov A.A. Intellekt zdaniy: formula [Intelligence of Buildings: the Formula]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2012, no. 3, pp. 54—57. (In Russian)
  4. Volkov A.A. Intellekt zdaniy. Chast’ 2 [Intelligence of buildings. Part 2]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2009, no. 1, pp. 213—216. (In Russian)
  5. Volkov A.A. Gomeostaticheskoe upravlenie zdaniyami [Homeostatic Management of Buildings]. Zhilishchnoe stroitel’stvo [House Construction]. 2003, no. 4, pp. 9—10. (In Russian)
  6. Gusakov A.A. Sistemotekhnika stroitel’stva [System Engineering of the Construction]. Moscow, Stroyizdat Publ., 1993, 368 p. (In Russian)
  7. Mozer M.C. Lessons from an Adaptive Home. Smart Environments: Technologies, Protocols, and Applications. Edited by D.J. Cook and S.K. Das. 2005, John Wiley & Sons, Inc. DOI: http://dx.doi.org/10.1002/047168659X.ch12.
  8. National Building Information Model Standard Project Committee: National BIM Standard — United States. Data access: https://www.nationalbimstandard.org/.
  9. BuildingSmart. Data access: http://www.buildingsmart.org.
  10. Volkov A.A. Kompleksnaya bezopasnost’ uslovno-abstraktnykh ob”ektov (zdaniy i sooruzheniy) v usloviyakh chrezvychaynykh situatsiy [Integrated Safety of conditionally abstract objects (buildings and structures) in emergency situations]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2007, no. 3, pp. 30—35. (In Russian)
  11. Volkov A.A. Sistemy aktivnoy bezopasnosti stroitel’nykh ob”ektov [Active Safety Systems of Construction Sites]. Zhilishchnoe stroitel’stvo [House Construction]. 2000, no. 7, p. 13. (In Russian)
  12. Volkov A.A., Yarulin R.N. Avtomatizatsiya proektirovaniya proizvodstva remontnykh rabot zdaniy i inzhenernoy infrastruktury [Computer-Aided Design of Repairs of Buildings and the Engineering Infrastructure]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 9, pp. 234—240. (In Russian)

Download

MIDDLEWARE FOR FUNCTIONAL MODELING OF INTELLIGENT BUILDINGS

Vestnik MGSU 10/2015
  • Volkov Andrey Anatol’evich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Rector, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Batov Evgeniy Igorevich - Moscow State University of Civil Engineering (National Research University (MGSU) postgraduate student, Department of Information Systems, Technology and Automation in Construction, Moscow State University of Civil Engineering (National Research University (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 182-187

The main aim of intelligent building as a system is constant adaptation to life cycle of inhabitants, preservation of dynamic equilibrium (homeostasis) of the building parameters corresponding to the preferences of the residents, energy efficiency and safety. Adaptation happens with the help of three additional groups of components if compared to common buildings. They form a system of “artificial” building intelligence: hardware, software, communication network. This article concerns integration of an intelligent building and a functional model. The usage of middleware for integration was substantiated. The following requirements to middleware were set: delivery to several recipients, low-latency, asynchronous delivery, messages prioritization, durability and configurable time to live, heterogeneous integration. Based on the conducted analysis, message-oriented middleware with publisher-subscriber and point-to-point models was selected. The authors proved that middleware is necessary for integration of the system of artifical intelligence of a building and a functional model. The most adaptable solution is today the use of middleware based on message passing.

DOI: 10.22227/1997-0935.2015.10.182-187

Download

Results 1 - 3 of 3