Estimation of seismic resistanceof an industrial building: probabilistic approach

Vestnik MGSU 11/2013
  • Zolina Tat’yana Vladimirova - Astrakhan Institute of Civil Engineering (AICI) Candidate of Technical Sciences, Professor, vice-rector, Astrakhan Institute of Civil Engineering (AICI), 18 Tatishchev str., 414056, Astrakhan, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Sadchikov Pavel Nikolaevich - State Autonomous Educational Institution of the Astrakhan area of higher education "Astrakhan State Architectural and Construction University" (JSC GAOU VPO "AGASU") Candidate of Technical Sciences, Associate Professor, Department of Automated Design and Modeling Systems, State Autonomous Educational Institution of the Astrakhan area of higher education "Astrakhan State Architectural and Construction University" (JSC GAOU VPO "AGASU"), 18 Tatishcheva str., Astrakhan, 414000, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 42-50

This article represents the results of the research of general approaches and methods of risk evaluation for further exploitation of industrial buildings under seismic loads. Algorithms, developed or adopted by the authors of the article are designed for evaluating strength and stability of an industrial building, considered as a three-dimensional two-mass system, where the calculation points are located at the nodes of intersection of columns and brake structures of frames and the longitudinal axis of coating.Solving the problem of integral reliability and durability of buildings and structures as well as well-balanced design and strength under extreme conditions means to perform quantitative assessment of risk and to minimize it. Most existing analysis and risk evaluation methods are qualitative and estimate the probability of an emergency situation.Algorithm, offered by the authors of this article, includes assessment of seismic vulnerability risk of a construction in case of an earthquake of certain intensity. Problems, arising due to the complexity of probabilistic calculations, are solved by using automated control systems.Using classic methods of statistic dynamics and reliability theory, the authors offer a probability calculation, including the following:• Cop has aland quarter phase spectraldensity components of seismic movements;• entrance and exit spectrums;• dispersion of generalized coordinatesfor each natural frequency of a building;• waveform factor matrix;• effective oscillation period of a con-struction under seismic load;• failure frequencies at significancevalue;• total dispersion for all waveforms;• conventional, external and full seismicrisk.The given method of evaluating resistance of buildings and constructions to seismic loads is a probabilistic method and can be used as a basis for algorithms to automatize corresponding calculations during engineering design and exploitation of buildings and constructions.

DOI: 10.22227/1997-0935.2013.11.42-50

  1. Lychev A.S. Veroyatnostnye metody rascheta stroitel’nykh elementov i sistem [Probabilistic Methods for Calculating Construction Components and Systems]. Moscow, Assotsiatsiya stroitelnyih vuzov Publ., 1995, 143 p.
  2. Esteva L., Rosenblueth E. Espectros de Tembloles a Distancians Moderadas y Grandes. Bol. Soc. Mex. Ing. Sism., 1964, no. 2(1), pp. 1—18.
  3. Rayzer V.D. Teoriya nadezhnosti v stroitel’nom proektirovanii: monografiya [The Theory of Reliability in Construction Design: monograph]. Moscow, ASV Publ., 1998, p. 304.
  4. Tichy M. On the reliability measure. Structural Safety. 1988, vol. 5, pp. 227—235.
  5. Tamrazyan A.G. Otsenka riska i nadezhnosti konstruktsiy i klyuchevykh elementov — neobkhodimoe uslovie bezopasnosti zdaniy i sooruzheniy [Risk and Reliability Assessment of Structures and Key Elements as a Necessary Factor for the Safety of Buildings and Structures]. Vestnik TsNIISK [Proceedings of Central Research Institute of Construction Structures Named after V.A. Kucherenko]. 2009, no. 1, pp. 160—171.
  6. Zolina T.V. Veroyatnostnyy raschet odnoetazhnogo promyshlennogo zdaniya, oborudovannogo mostovym kranom, s uchetom prostranstvennoy raboty ego karkasa [The Probabilistic Calculation of One Storey Industrial Building Equipped with a Bridge Crane, Taking into Account the Spatial Work of its Carcass]. Vestnik VolgGASU. Seriya Stroitel’stvo i arkhitektura [Proceedings of Volgograd State University of Architecture and Civil Engineering. Construction and Architecture Series]. 2012, no. 28 (47), pp. 7—13.
  7. Pshenichkina V.A., Belousov A.S., Kuleshova A.N., Churakov A.A. Nadezhnost’ zdaniy kak prostranstvennykh sostavnykh sistem pri seysmicheskikh vozdeystviyakh [Reliability of buildings as spatial composite systems under seismic effects]. Volgograd, VolgGASU Publ., 2010, 224 p.
  8. Barshteyn M.F. Prilozhenie veroyatnostnykh metodov k raschetu sooruzheniy na seysmicheskie vozdeystviya [The Application of Probabilistic Methods to the Analysis of Structures for Seismic Effects]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural Mechanics and Calculation of Structures]. 1960, no. 2, pp. 6—14.
  9. Tamrazyan A.G. Raschet elementov konstruktsiy pri zadannoy nadezhnosti i normal’nom raspredelenii nagruzki i nesushchey sposobnosti [Calculation of Structural Elements at a Given Reliability and the Normal Load Distribution and Bearing Capacity]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 10, pp. 109—115.
  10. Zolina T.V., Sadchikov P.N. Avtomatizirovannaya sistema rascheta promyshlennogo zdaniya na kranovye i seysmicheskie nagruzki [The Automated System of Calculation of an Industrial Building on the Crane and Seismic Loads]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2012, no. 8, pp. 14—16.


Results 1 - 1 of 1