LIGHTWEIGHT SLAB CAST OVER PRECAST JOISTS

Vestnik MGSU 6/2017 Volume 12
  • Koyankin Aleksandr Aleksandrovich - Siberian Federal University (SibFU) Candidate of Technical Sciences, Associate Professor, Department of Building Structures and Control Systems, Siberian Federal University (SibFU), 79 Svobodny Avenue, Krasnoyarsk, 660041, Russian Federation.

Pages 636-641

Precast-monolithic house-building in domestic and world practice is a significant part in the mass construction. We propose a relatively large number of designs of precast-monolithic buildings, as well as its individual elements. Despite this, we cannot say that found the most effective constructive solutions able to satisfy the requirements of consumers (future residents) and builders. On this basis, we developed quite effective, from the point of view of construction and further operation, a constructive solution of light weight precast-monolithic overlap. Some features offered are overlapping: smaller mass, compared with beams of heavy concrete; increased heat and sound insulation properties; optimal use of the structural properties of heavy and light precast monolithic concrete and longitudinal reinforcement, depending on the stage of construction. The author has carried out in this article the results of numerical studies the proposed design of precast-monolithic overlap, confirming its compliance with the requirements of 1st and 2nd group of limit States.

DOI: 10.22227/1997-0935.2017.6.636-641

Download

Rational distribution of slab stiffness along the height of building with account for shear deformation

Vestnik MGSU 11/2013
  • Tamrazyan Ashot Georgievich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, full member, Russian Engineering Academy, head of the directorate, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe Shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Filimonova Ekaterina Aleksandrovna - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Re- inforced Concrete and Masonry Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 84-90

Currently, great attention is paid to the choice of optimal and rational design and construction solutions for individual structures and buildings in general. In the process of design not only constructive solution of an element is important, but also its location in the design scheme of the building. It is known that the correct consideration of the elements interaction in the design scheme contributes significantly to the rigidity and strength of multi-storey buildings.Slabs are involved in bending and shear and act like keys between the vertical elements. In order to reduce shear deformations and enhance overall stability of the building it is possible to increase the size of the keys, that means, to increase the height of a slab. In is necessary to determine the area that has the most significant impact on the rigidity and stability of the frame.For deciding that issue a computer model of 25-storey building was built. Settlement scheme was used to estimate the strength, deformability and stability of the frame.Basing on the models stability assessment it is suggested that the most efficient design solution is the floor slabs strengthening in the middle tier of the building by 0.4-0.5 heights of the building.

DOI: 10.22227/1997-0935.2013.11.84-90

References
  1. Sahab M.G., Ashour A.F., Toropov V.V. Cost Optimization of Reinforced Concrete Flat Slab Buildings. Engineering Structures. 2005, vol. 27, no. 3, pp. 313—322.
  2. Wust J., Wagner W. Systematic Prediction of Yield-Line Configurations for Arbitrary Polygonal Plates. Karlsruhe: Baustatik, 2007, 24 p.
  3. Malkov V.P., Kisilev V.G., Sergeev S.A. Optimizatsiya po masse prostranstvennykh ramnykh konstruktsiy s var'iruemymi tolshchinami poperechnykh secheniy s uchetom ogranicheniy po ustalostnoy dolgovechnosti [Optimization of Three Dimensional Frame Structures with the Variable Cross Section Thicknesses in Respect of their Mass Considering Restrictions of Fatigue Life]. Prikladnaya mekhanika i tekhnologiya mashinostroeniya: sbornik nauchnykh trudov [Applied Mechanics and Mechanical Engineering: Collection of Scientific Works]. Nizhniy Novgorod, 1997, pp. 77—97.
  4. Salamakhin P.M. Kontseptsiya avtomatizatsii proektirovaniya i optimizatsii konstruktsiy mostov [The Concept of Design Automation and Optimization of Bridge Construction]. Nauka i tekhnika v dorozhnoy otrasli [Science and Techniques in Road Sector]. 2005, no. 2(33), pp. 11—14.
  5. Serpik I.N., Mironenko I.V. Optimizatsiya zhelezobetonnykh ram s uchetom mnogovariantnosti nagruzheniya [Optimization of Reinforced Concrete Frames with Account for Multivariability of Loadings]. Stroitel'stvo i rekonstruktsiya [Construction and Reconstruction]. 2012, no. 1, pp. 33—39.
  6. Tamrazyan A.G., Filimonova E.A. Metod poiska rezerva nesushchey sposobnosti zhelezobetonnykh plit [Searching Method for Reserve of Load-bearing Capacity of Reinforced Concrete Slabs]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2011, no. 3, pp. 23—25.
  7. Klyueva N.V., Vetrova O.A. K otsenke zhivuchesti zhelezobetonnykh ramno-sterzhnevykh konstruktivnykh sistem pri vnezapnykh zaproektnykh vozdeystviyakh [Assesment of the Life of Reinforced Concrete Frame Construction Systems in Case of Unexpected Impacts beyond Design]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2006, no. 11, pp. 56—57.
  8. Kovalevich O.M. K voprosu o vybore optimal'nykh zatrat na upravlenie riskom pri chrezvychaynykh situatsiyakh [On the Problem of Choosing Economic Costs for Risk Managment in Case of Emergency Situations]. Problemy bezopasnosti pri chrezvychaynykh situatsiyakh [Security Issues in Emergency Situations]. 2001, no. 2, pp. 27—41.
  9. Gorodetskiy A.S., Evzerov I.D. Komp'yuternye modeli konstruktsiy [Computer Models of Structures]. Kiev, Fakt Publ., 2005, 344 p.
  10. Simbirkin V.N. Proektirovanie zhelezobetonnykh karkasov mnogoetazhnykh zdaniy s pomoshch'yu PK STAR ES [Designing Reinforced Concrete Frameworks for Multi-storey Buildings Using Software STAR ES]. Informatsionnyy vestnik Mosoblgosekspertizy [Informational Proceedings of Moscow Regional State Expertise]. 2005, no. 3(10), pp. 42—28.

Download

CAST-IN-PLACE BUILDING FRAME AND ITS FEATURES AT SEPARATE LIFE CYCLES

Vestnik MGSU 9/2015
  • Koyankin Aleksandr Aleksandrovich - Siberian Federal University (SibFU) Candidate of Technical Sciences, Associate Professor, Department of Building Structures and Control Systems, Siberian Federal University (SibFU), 79 Svobodny Avenue, Krasnoyarsk, 660041, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Mitasov Valeriy Mikhaylovich - Novosibirsk State University of Architecture and Civil Engineering (Sibstrin) (FGBOU VPO NGASU) Doctor of Technical Sciences, Professor, chair, Department of Reinforced Concrete Structures, Novosibirsk State University of Architecture and Civil Engineering (Sibstrin) (FGBOU VPO NGASU), 113 Leningradskaya str., Novosibirsk, 630008, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 28-35

Modern intensive development of precast-cast-in-place construction has led to creation of a wide range of various constructive systems of buildings during the last 100 years. They allow constructing buildings with best account of the requirements of functionality, architectural expressiveness, production possibilities of construction companies, etc. However in spite of this development both precast and cast-in-place housing construction has its peculiarities, positive and negative ones. The constructive systems of precast monolithic buildings existing at the moment are based on the required mutual deformation of prefabricated reinforced and cast iron reinforced concrete at the stage of a building construction and at the stage of its use as well. Having refused from this rule, the authors of this article have introduced a constructive system of a precast monolithic building able to bear loads, developing at the stage of erection (due to completion of a precast frame) and at the stage of use (due to completion of a precast monolithic frame). The offered construction of a precast monolithic building frame allows efficiently using the advantages of precast and cast-in-place construction minimizing their disadvantages and it also fully corresponds to the obligatory requirements to buildings. The corresponding patents are obtained.

DOI: 10.22227/1997-0935.2015.9.28-35

References
  1. Mordich A.I., Belevich V.N., Simbirkin V.N., Navoy D.I., Mironov A.N., Raychev V.P., Chubrik A.I. Effektivnye konstruktivnye sistemy mnogoetazhnykh zhilykh domov i obshchestvennykh zdaniy (12…25 etazhey) dlya usloviy stroitel’stva v Moskve i gorodakh Moskovskoy oblasti, naibolee polno udovletvoryayushchie sovremennym marketingovym trebovaniyam [Effective Constructional Systems of Multistory Blocks of Flats and Civil Buildings (12…25 Storey) for the Construction Conditions in Moscow and the Cities of Moscow Region, More Fully Fulfilling Modern Marketing Demands]. Minsk, NIEPUP “Institut BelNIIS” Publ., 2002, 117 p. (In Russian)
  2. Unifitsirovannaya sistema sborno-monolitnogo bezrigel’nogo karkasa KUB 2.5. Vypusk 1-1 / TsNIIPI «Monolit» [Unified System of Precast-Cast-in-place Reinforced Concrete Composite Frame without Collar Beams KUB 2.5. Edition 1-1 / TSNIIPI “Monolit”]. Moscow, Stroyizdat Publ., 1990, 49 p. (In Russian)
  3. Shembakov V.A. Sborno-monolitnoe karkasnoe domostroenie: rukovodstvo k prinyatiyu resheniya [Cast-in place and Precast Frame House-Building. Guidance for Decision-Making]. 2-nd edition, revised. Cheboksary, OOO “Cheboksarskaya tipografiya № 1” Publ., 2005, 119 p. (In Russian)
  4. Mitasov V.M., Koyankin A.A. Rabota diska sborno-monolitnogo perekrytiya [Operation of a Precast Monolithic Slab]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 2014, no. 3, pp. 103—109. (In Russian)
  5. Nikitin N.V., Franov P.I., Timonin E.M. Rekomendatsii po proektirovaniyu konstruktsiy ploskogo sborno-monolitnogo perekrytiya «Sochi» [Recommendations for Engineering of the Constructions of Flat Precast Monolithic Slab “Sochi”]. 3-rd edition, revised. Moscow, Stroyizdat Publ., 1975, 34 p. (In Russian)
  6. Koyankin A.A., Mitasov V.M. Eksperimental’nye issledovaniya raboty stykovogo soedineniya rigelya s kolonnoy v sborno-monolitnom perekrytii [Experimental Study of the Operation of the Bolt Joint of a Bearer with a Column in Precast-Monolithic Ceiling]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2015, no. 5, pp. 27—34. (In Russian)
  7. Sakhnovskiy K.V. Zhelezobetonnye konstruktsii [Reinforced Concrete Constructions]. 8th edition. Moscow, Gosstroyizdat Publ., 1960, 840 p. (In Russian)
  8. Mordich A.I. Sborno-monolitnye i monolitnye karkasy mnogoetazhnykh zdaniy s ploskimi raspornymi perekrytiyami [Precast-Monolithic and Monolithic Frames of Multistoreyed Buildings with Flat Brace Floor]. Montazhnye i spetsial’nye raboty v stroitel’stve [Building and Special Works in Construction]. 2001, no. 8—9, pp. 10—14. (In Russian)
  9. Mordich A.I. Belevich V.N., Simbirkin V.N., Navoy D.I. Opyt prakticheskogo primeneniya i osnovnye rezul’taty naturnykh ispytaniy sborno-monolitnogo karkasa BelNIIS [Experience of Practical Application and the Main Results of Field Studies of the Precast-Monolithic Frame BelNIIS]. BST: Byulleten’ stroitel’noy tekhniki [BST: Bulletin of Construction Technologies]. 2004, no. 8, pp. 8—12. (In Russian)
  10. Mordich A.I., Sadokho V.E., Podlipskaya I.I., Taratynova N.A. Sborno-monolitnye prednapryazhennye perekrytiya s primeneniem mnogopustotnykh plit [Precast-Monolithic Prestressed Slabs Using Hollow Core Slabs]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 1993, no. 5, pp. 3—6. (In Russian)
  11. Weber H., Bredenbals B., Hullman H. Bauelemente mit Gittertragern. Institut fur Industrialisierung des Buens. Hannover, 1996, 24 p.
  12. Dimitrijevic R. A Prestressed «Open» System from Jugoslavia. Système «ouvert» précontraint yougoslave. Batiment Informational, Building Research and Practice. 1978, vol. 6, no. 4, pp. 244, 245—249. Nauchno-tekhnicheskiy referativnyy sbornik TsINIS [Science and Technical Abstract Collection of the Central Institute of Scientific Information on Construction]. 1979, vol. 14, no. 3, pp. 8—12.
  13. Bausysteme mit Gittertragern. Fachgruppe Betonbauteile mit Gittertragern im BDB. Bonn, 1998, 40 p.
  14. Schwerm D., Jaurini G. Deskensysteme aus Betonfertigteilen. Informationsstelle Beton-Bauteile, 1997, Bonn, 37 p.
  15. Pessiki S., Prior R., Sause R., Slaughter S. Review of Existing Precast Concrete Gravity Load Floor Framing System. PCI Journal. 1995, vol. 40, no. 2, pp. 52—67.
  16. Koprivitsa B. Primenenie karkasnoy sistemy IMS dlya stroitel’stva zhilykh i obshchestvennykh zdaniy [Application of Frame System IMS for Constructing Residentialand Public Buildings]. Zhilishchnoe stroitel’stvo [Housing Construction]. 1984, no. 1, pp. 30—32. (In Russian)
  17. Semchenkov A.S. Obosnovanie regional’no-adaptirovannye industrial’noy universal’noy stroitel’noy sistemy «RADIUSS» [Reasons of Regional-Adaptive Industrial Universal Construction System “RADIUSS”]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2008, no. 4, pp. 1—7. (In Russian)
  18. Semchenkov A.S. Regional’no-adaptiruemye sborno-monolitnye stroitel’nye sistemy dlya mnogoetazhnykh zdaniy [Regional-Adaptive Precast-Cast-in-place Constructional Systems for Multi-Storied Buildings]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2010, no. 3, pp. 2—6. (In Russian)
  19. Kimberg A.M. Effektivnaya konstruktivnaya sistema karkasno-panel’nykh zdaniy s natyazheniem armatury v postroechnykh usloviyakh (metodicheskie rekomendatsii) [Effective Constructive System of Frame-Panel Buildings with Tensioning of the Steel in Site Conditions (Methodological Recommendations)]. Tbilisi, TbilZNIIEP Publ., 1985, 33 p. (In Russian)
  20. Kazina G.A. Sovremennye zhelezobetonnye konstruktsii seysmostoykikh zdaniy [Modern Reinforced Concrete Structures of Earthquake-Resistant Buildings]. Moscow, VNIIS Publ., 1981, 25 p. (In Russian)

Download

Experimental study of the operation of the bolt joint of a bearerwith a column in precast-monolithic ceiling

Vestnik MGSU 5/2015
  • Koyankin Aleksandr Aleksandrovich - Siberian Federal University (SibFU) Candidate of Technical Sciences, Associate Professor, Department of Building Structures and Control Systems, Siberian Federal University (SibFU), 79 Svobodny Avenue, Krasnoyarsk, 660041, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Mitasov Valeriy Mikhaylovich - Novosibirsk State University of Architecture and Civil Engineering (Sibstrin) (FGBOU VPO NGASU) Doctor of Technical Sciences, Professor, chair, Department of Reinforced Concrete Structures, Novosibirsk State University of Architecture and Civil Engineering (Sibstrin) (FGBOU VPO NGASU), 113 Leningradskaya str., Novosibirsk, 630008, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 27-35

Precast-monolithic construction is becoming an increasingly popular form of housing. The wide distribution of this type of construction is explained by the possibility to successfully combine the advantages of precast and monolithic construction, at the same time reducing their disadvantages. Though there is a significant lack of data, including experimental data, for objective assessment of the stress-strain state of precast-monolithic floor structures. In order to investigate the structural reliability of the bolt joint of a bearer with a column in a precast-monolithic building a series of experimental investigations were carried out in the laboratory of testing the building structures of the Siberian Federal University.One of the main conclusions is that the bolt joint of a bearer with a column is characterized by sufficient rigidity, crack resistance and bearing capacity. The results of the given work have proved the data obtained in previously conducted investigations on a fragment of a precast-monolithic ceiling.

DOI: 10.22227/1997-0935.2015.5.27-35

References
  1. Mordich A.I., Belevich V.N., Simbirkin V.N., Navoy D.I., Mironov A.N., Raychev V.P., Chubrik A.I. Effektivnye konstruktivnye sistemy mnogoetazhnykh zhilykh domov i obshchestvennykh zdaniy (12…25 etazhey) dlya usloviy stroitel’stva v Moskve i gorodakh Moskovskoy oblasti, naibolee polno udovletvoryayushchie sovremennym marketingovym trebovaniyam [Efficient Structural Systems of Multi-Storey Residential Buildings and Public Buildings (12...25 floors) for Construction in Moscow and the Moscow Region Cities, which Best Meet Modern Marketing Requirements]. Minsk, NIEPUP «Institut BelNIIS» Publ., 2002, 117 p. (In Russian)
  2. Shembakov V.A. Sborno-monolitnoe karkasnoe domostroenie: rukovodstvo k prinyatiyu resheniya [Precast-Monolithic Frame Construction. A Guide to Making Decisions]. 2nd edition. Cheboksary, 2005, 119 p. (In Russian)
  3. Unifitsirovannaya sistema sborno-monolitnogo bezrigel’nogo karkasa KUB 2.5. Vypusk 1-1 [Unified System of Precast-Monolithic Girderless Frame KUB 2.5. Issue 1-1]. Moscow, Stroyizdat Publ., 1990, 49 p. (In Russian)
  4. Nikitin N.V., Franov P.I., Timonin E.M. Rekomendatsii po proektirovaniyu konstruktsiy ploskogo sborno-monolitnogo perekrytiya «Sochi» [Recommendations for structural design of flat precast-monolithic slabs “Sochi”]. 3rd edition, revised and enlarged. Moscow, Stroyizdat Publ., 1975, 34 p. (In Russian)
  5. Kazina G.A. Sovremennye zhelezobetonnye konstruktsii seysmostoykikh zdaniy [Modern Reinforced Concrete Structures of Earthquake-Resistant Buildings]. Moscow, VNIIS Publ., 1981, 25 p. (In Russian)
  6. Selivanov V.N., Selivanov S.N. Patent. 2107784 RF, MPK E04G23, E04G21, E04B1/35. Sposob vozvedeniya, vosstanovleniya ili rekonstruktsii zdaniy, sooruzheniy i sposob izgotovleniya stroitel’nykh izdeliy i konstruktsiy iz kompozitsionnykh materialov, preimushchestvenno betonov, dlya vozvedeniya, vosstanovleniya ili rekonstruktsii zdaniy, sooruzheniy [Russian Patent 2107784 RF, MPK E04G23, E04G21, E04B1/35. Method of Constructing, Repair or Reconstruction of Buildings, Structures and Method of Producing Building Products and Structures of Composite Materials]. Zayavka № 96124582/03; zayavl. 30.12.1996; opubl. 27.03.1998 [Notice no. 96124582/03; appl. 30.12.1996; publ. 27.03.1998]. (In Russian)
  7. Mordich A.I., Kuchikhin S.N., Belevich V.N., Simbirkin V.N. Patent 2226593 RF, MPK E04B1/18. Zhelezobetonnyy sborno-monolitnyy karkas mnogoetazhnogo zdaniya [Russian Patent 2226593 RF, MPK E04B1/18. Reinforced Concrete Precast-Monolithic Frame of a Multistoreyed Building]. Zayavka № 2002118292/03; zayavl. 08.07.2002; opubl. 10.04.2004 [Notice no. 2002118292/03; appl. 08.07.2002; publ. 10.04.2004]. Patent holder “Institut BelNIIS”. (In Russian)
  8. Mustafin I.I. Patent 2281362 RF, MPK E04B1/20. Sborno-monolitnyy zhelezobetonnyy karkas mnogoetazhnogo zdaniya «Kazan’-XXIv» [Russian Patent 2281362 RF, MPK E04B1/20. Precast-Monolithic Reinforced Concrete Frame of a Multistoreyed Building “Kazan-21 c.”]. Zayavka № 2004139244/03; zayavl. 27.12.2004; opubl. 10.08.2006. Byul. № 22 [Notice no. 2004139244/03; appl. 27.12.2004; publ. 10.08.2006. Bulletin no. 22]. 14 p. (In Russian)
  9. Mordich A.I. Sborno-monolitnye i monolitnye karkasy mnogoetazhnykh zdaniy s ploskimi raspornymi perekrytiyami [Precast-Monolithic and Monolithic Frames of Multistoreyed Buildings with Flat Brace Floor]. Montazhnye i spetsial’nye raboty v stroitel’stve [Building and Special Works in Construction]. 2001, no. 8—9, pp. 10—14.
  10. Sakhnovskiy K.V. Zhelezobetonnye konstruktsii [Reinforced Concrete Constructions]. 8th edition. Moscow, Gosstroyizdat Publ., 1960, 840 p. (In Russian)
  11. Mordich A.I. Belevich V.N., Simbirkin V.N., Navoy D.I. Opyt prakticheskogo primeneniya i osnovnye rezul’taty naturnykh ispytaniy sborno-monolitnogo karkasa BelNIIS [Experience of Practical Application and the Main Results of Field Studies of the Precast-Monolithic Frame BelNIIS]. BST: Byulleten’ stroitel’noy tekhniki [BST: Bulletin of Construction Technologies]. 2004, no. 8, pp. 8—12. (In Russian)
  12. Koprivitsa B. Primenenie karkasnoy sistemy IMS dlya stroitel’stva zhilykh i obshchestvennykh zdaniy [Application of Frame System IMS for Constructing Residentialand Public Buildings]. Zhilishchnoe stroitel’stvo [Housing Construction]. 1984, no. 1, pp. 30—32. (In Russian)
  13. Mordich A.I., Sadokho V.E., Podlipskaya I.I., Taratynova N.A. Sborno-monolitnye prednapryazhennye perekrytiya s primeneniem mnogopustotnykh plit [Precast-Monolithic Prestressed Slabs Using Hollow Core Slabs]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 1993, no. 5, pp. 3—6. (In Russian)
  14. Weber H., Bredenbals B., Hullman H. Bauelemente mit Gittertragern. Institut fur Industrialisierung des Buens. Hannover, 1996, 24 p.
  15. Bausysteme mit Gittertragern. Fachgruppe Betonbauteile mit Gittertragern im BDB. Bonn, 1998, 40 p.
  16. Janti F. Sborno-monolitnyy karkas «Delta» [Precast-Monolithic Frame “Delta”]. Prospekt kompanii «Deltatek OY» [Circular of the Company “Deltatek OY”]. 1998, 6 p. (In Russian)
  17. Dimitrijevic R. A Prestressed «Open» System from Jugoslavia. Système «ouvert» précontraint yougoslave. Batiment Informational, Building Research and Practice. 1978, vol. 6, no. 4, pp. 244, 245—249. Nauchno-tekhnicheskiy referativnyy sbornik TsINIS [Science and Technical Abstract Collection of the Central Institute of Scientific Information on Construction]. 1979, vol. 14, no. 3, pp. 8—12.
  18. Pessiki S., Prior R., Sause R., Slaughter S. Review of Existing Precast Concrete Gravity Load Floor Framing System. PCI Journal. 1995, vol. 40, no. 2, pp. 52—67.
  19. Schwerm D., Jaurini G. Deskensysteme aus Betonfertigteilen. Informationsstelle Beton-Bauteile. Bonn, 1997, 37 p.
  20. Mitasov V.M., Koyankin A.A. Rabota diska sborno-monolitnogo perekrytiya [Operation of a Floor Slab of a Precast-Monolithic Floor]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 2014, no. 3, pp. 103—110. (In Russian)

Download

EXPERIMENTAL RESEARCH OF THE JOINS OF A HOLLOW SLAB WITH PRECAST-CAST-IN-PLACE AND MONOLITHIC GIRDER

Vestnik MGSU 10/2015
  • Koyankin Aleksandr Aleksandrovich - Siberian Federal University (SibFU) Candidate of Technical Sciences, Associate Professor, Department of Building Structures and Control Systems, Siberian Federal University (SibFU), 79 Svobodny Avenue, Krasnoyarsk, 660041, Russian Federation.
  • Mitasov Valeriy Mikhaylovich - Novosibirsk State University of Architecture and Civil Engineering (Sibstrin) (FGBOU VPO NGASU (Sibstrin)) Doctor of Technical Sciences, chair, Department of Reinforced Concrete Structures, Novosibirsk State University of Architecture and Civil Engineering (Sibstrin) (FGBOU VPO NGASU (Sibstrin)), 113 Leningradskaya str., Novosibirsk, 630008, Russian Federation.

Pages 32-39

The contemporary precast-cast-in-place housing construction has become widely used on the territory of Russia. A great amount of big construction companies begin using the technology of precast and cast-in-place housing construction as the main one. This fact is proving the convenience of reinforced precast and cast-in-place concrete for the buildings of various functions in the climatic conditions of our country. Though there is a lack of investigations of such constructions though they are increasingly developing. Due to the lack of experimental research data existing at the moment, which allow estimating deformed condition of precast-cast-in-place constructions of slabs objectively, experimental research of hollow slab longitudinal beam with precast-cast-in-place and cast-in-place joist was carried out by the authors. The results of the given work prove the data previously obtained by the authors in their experiments using a fragment of precast-cast-in-place slab.

DOI: 10.22227/1997-0935.2015.10.32-39

References
  1. Mitasov V.M., Koyankin A.A. Rabota diska sborno-monolitnogo perekrytiya [Operation of a slab of cast over precast joists]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 2014, no. 3 (663), pp. 103—119. (In Russian)
  2. Koyankin A.A., Mitasov V.M. Eksperimental’nye issledovaniya raboty stykovogo soedineniya rigelya s kolonnoy v sborno-monolitnom perekrytii [Experimental Study of the Operation of the Bolt Joint of a Bearer with a Column in Precast-Monolithic Ceiling]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2015, no. 5, pp. 27—34. (In Russian)
  3. Unifitsirovannaya sistema sborno-monolitnogo bezrigel’nogo karkasa KUB 2.5. Vypusk 1-1 [Unified System of Precast-Cast-in-Place Reinforced Concrete Composite Frame Without Collar Beams KUB 2.5. Edition 1-1]. Moscow, Stroyizdat Publ., 1990, 49 p. (In Russian)
  4. Shembakov V.A. Sborno-monolitnoe karkasnoe domostroenie. Rukovodstvo k prinyatiyu resheniya [Cast-in Place and Precast Frame House-Building. Guidance for Decision-Making]. 2nd edition, revised. Cheboksary, OOO “Cheboksarskaya tipografiya № 1” Publ., 2005, 119 p. (In Russian)
  5. Mordich A.I., Belevich V.N., Simbirkin V.N., Navoy D.I., Mironov A.N., Raychev V.P., Chubrik A.I. Effektivnye konstruktivnye sistemy mnogoetazhnykh zhilykh domov i obshchestvennykh zdaniy (12…25 etazhey) dlya usloviy stroitel’stva v Moskve i gorodakh Moskovskoy oblasti, naibolee polno udovletvoryayushchie sovremennym marketingovym trebovaniyam [Effective Structural Systems of Multistory Blocks of Flats and Civil Buildings (12…25 Stories) for Construction Conditions in Moscow and the Cities of Moscow Region, Fulfilling Modern Marketing Demands More Completely]. Minsk, NIEPUP «Institut BelNIIS» Publ., 2002, 117 p. (In Russian)
  6. Nikitin N.V., Franov P.I., Timonin E.M. Rekomendatsii po proektirovaniyu konstruktsiy ploskogo sborno-monolitnogo perekrytiya «Sochi» [Recommendations for Engineering Constructions of a Flat Precast-Cast-In-Place Slab “Sochi”]. 3rd edition, revised. Moscow, Stroyizdat Publ., 1975, 34 p. (In Russian)
  7. Sakhnovskiy K.V. Zhelezobetonnye konstruktsii [Reinforced Concrete Structures]. 8th edition, revised. Moscow, Gosstroyizdat Publ., 1959, 840 p. (In Russian)
  8. Mordich A.I., Belevich V.N., Simbirkin V.N., Navoy D.I. Opyt prakticheskogo primeneniya i osnovnye rezul’taty naturnykh ispytaniy sborno-monolitnogo karkasa BelNIIS [Experience of Practical Use and Main Results of In-Place Tests of Precast and Cast-In-Place Frame BelNIIS]. BST: Byulleten’ stroitel’noy tekhniki [BST — Bulletin of Construction Equipment]. 2004, no. 8, pp. 8—12. (In Russian)
  9. Mordich A.I. Sborno-monolitnye i monolitnye karkasy mnogoetazhnykh zdaniy s ploskimi raspornymi perekrytiyami [In-cast and Precast Joists and Cast-In-Place Frames of Multi-Storey Buildings with Flat Space Slabs]. Montazhnye i spetsial’nye raboty v stroitel’stve [Erecting and Special Works in Construction]. 2001, no. 8—9, pp. 10—14. (In Russian)
  10. Mordich A.I., Sadokho V.E., Podlipskaya I.I., Taratynova N.A. Sborno-monolitnye prednapryazhennye perekrytiya s primeneniem mnogopustotnykh plit [In-cast and Precast Joists Stressed Slabs with Use of Hollow-Core Slab]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 1993, no. 5, pp. 3—6. (In Russian)
  11. Semchenkov A.S. Obosnovanie regional’no-adaptiruemoy industrial’noy universal’noy stroitel’noy sistemy «RADIUSS» [Justification of regional-adaptive industrial universal construction system “RADIUSS”]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2008, no. 4, pp. 2—6. (In Russian)
  12. Koprivitsa B. Primenenie karkasnoy sistemy IMS dlya stroitel’stva zhilykh i obshchestvennykh zdaniy [The Use of Frame System IMS for Construction of Residential and Industrial Buildings]. Zhilishchnoe stroitel’stvo [Housing Construction]. 1984, no. 1, pp. 30—32. (In Russian)
  13. Semchenkov A.S. Regional’no-adaptiruemye sborno-monolitnye stroitel’nye sistemy dlya mnogoetazhnykh zdaniy [Regional-Adaptive Precast-Cast-In-Place Constructional Systems for Multi-Storied Buildings]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2010, no. 6, pp. 2—6. (In Russian)
  14. Kazina G.A. Sovremennye seysmostoykie konstruktsii zhelezobetonnykh zdaniy [Modern Earthquake-Resistant Constructions of Reinforced Concrete Buildings]. Moscow, VNIIIS Publ., 1981, 75 p. (In Russian)
  15. Kimberg A.M. Effektivnaya konstruktivnaya sistema karkasno-panel’nykh zdaniy s natyazheniem armatury v postroechnykh usloviyakh (metodicheskie rekomendatsii) [Effective Constructive System of Frame-Panel Buildings with Tensioning of the Steel in Site Conditions (Methodological Recommendations)]. Tbilisi, TbilZNIIEP Publ., 1985, 33 p. (In Russian)
  16. Weber H., Bredenbals B., Hullman H. Bauelemente mit Gittertragern. Institut fur Industrialisierung des Buens. Hannover, 1996, 24 p.
  17. Dimitrijevic R. A Prestressed “Open” System from Jugoslavia. Système «Ouvert» Précontraint Yougoslave. Batiment Informational, Building Research and Practice. 1978, vol. 6, no. 4, pp. 244, 245—249. Nauchno-tekhnicheskiy referativnyy sbornik TsINIS [Science and Technical Abstract Collection of the Central Institute of Scientific Information on Construction]. 1979, vol. 14, no. 3, pp. 8—12.
  18. Bausysteme mit Gittertragern. Fachgruppe Betonbauteile mit Gittertragern im BDB. Bonn, 1998, 40 p.
  19. Schwerm D., Jaurini G. Deskensysteme aus Betonfertigteilen. Informationsstelle Beton-Bauteile. Bonn, 1997, 37 p.
  20. Pessiki S., Prior R., Sause R., Slaughter S. Review of Existing Precast Concrete Gravity Load Floor Framing System. PCI Journal. 1995, vol. 40, no. 2, pp. 52—67.

Download

Comparative analysis of the results of experimental and numerical studies of the performance of cross-beam butt joint with a column in slab cast over precast joists

Vestnik MGSU 12/2015
  • Koyankin Aleksandr Aleksandrovich - Siberian Federal University (SibFU) Candidate of Technical Sciences, Associate Professor, Department of Building Structures and Control Systems, Siberian Federal University (SibFU), 79 Svobodny Avenue, Krasnoyarsk, 660041, Russian Federation.
  • Kolcheva Natal’ya Viktorovna - Siberian Federal University (FGOU VPO SFU) Master student, Department of Building Structures and Control Systems, Siberian Federal University (FGOU VPO SFU), 79 Svobodny Avenue, Krasnoyarsk, 660041, Russian Federation.

Pages 59-65

At the present moment in Russia the construction of precast and cast-in-place frame buildings are widely spread in Russia. This technology is the most advanced because of the possibility of maximally efficient simultaneous use of the advantages of precast and monolithic housing construction with minimizing their disadvantages. At the same time the volume of the scientific researches on stress-strain state of cast-in-place and precast constructions is not enough to objectively evaluate the bearing capacity, rigidity and crack-resistance of such buildings. Cast-in-place and precast construction covers a considerable part in large-scale construction, but despite this, there is a great variety of gaps in the understanding of such construction performance. Reasoning from this fact, numerical and experimental research has been carried out on studying of the performance of longitudinal beam joint to column with a column in slab cast over precast joists.

DOI: 10.22227/1997-0935.2015.12.59-65

References
  1. Shembakov V.A. Sborno-monolitnoe karkasnoe domostroenie: rukovodstvo k prinyatiyu resheniya [Cast-in place and Precast Frame House-Building. Guidance for Decision-Making]. 2nd edition, revised. Cheboksary, 2005, 119 p. (In Russian)
  2. Unifitsirovannaya sistema sborno-monolitnogo bezrigel’nogo karkasa KUB 2.5. Vypusk 1-1 / TsNIIPI «Monolit» [Unified System of Precast-Cast-in-place Reinforced Concrete Composite Frame without Collar Beams KUB 2.5. Edition 1-1 / TSNIIPI “Monolit”]. Moscow, Stroyizdat Publ., 1990, 49 p. (In Russian)
  3. Selivanov V.N., Selivanov S.N. Patent 2107784 RU, MPK E04V 1/35, E04G 23/00, E04G 21/00. Sposob vozvedeniya, vosstanovleniya ili rekonstruktsii zdaniy, sooruzheniy i sposob izgotovleniya stroitel’nykh izdeliy i konstruktsiy iz kompozitsionnykh materialov, preimushchestvenno betonov, dlya vozvedeniya, vosstanovleniya ili rekonstruktsii zdaniy, sooruzheniy [Russian Patent 2107784 RU, MPK E04V 1/35, E04G 23/00, E04G 21/00. Ways of Construction, Reconstruction and Restoration of Buildings, Structures and Method of Construction Products of Composite Materials, Primarily of Concrete, for Construction, Reconstruction and Restoration of Buildings, Structures]. Patent holder V.N. Selivanov, S.N. Selivanov. No. 96124582/03 ; appl. 30.12.1996 ; publ. 27.03.1998. (In Russian)
  4. Mordich A.I., Sadokho V.E., Podlipskaya I.I., Taratynova N.A. Sborno-monolitnye prednapryazhennye perekrytiya s primeneniem mnogopustotnykh plit [Precast-Monolithic Prestressed Slabs Using Hollow Core Slabs]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 1993, no. 5, pp. 3—6. (In Russian)
  5. Mordich A.I., Kuchikhin S.N., Belevich V.N., Simbirkin V.N. Patent 2226593 RU, MPK E04V 1/18. Zhelezobetonnyy sborno-monolitnyy karkas mnogoetazhnogo zdaniya [Russian Patent 2226593 RU, MPK E04V 1/18Reinforced Concrete Precast-Cast-In-Place Frame of a Multistorey Building]. Patent holder Institute «BelNIIS». No. 2002118292/03 ; appl. 08.07.2002 ; publ. 10.04.2004. Byul. no. 10. (In Russian)
  6. Mustafin I.I. Patent 2281362 RU, MPK E04V 1/20. Sborno-monolitnyy zhelezobetonnyy karkas mnogoetazhnogo zdaniya «Kazan’-XXIv» [Russian Patent 2281362 RU, MPK E04V 1/20. Precast-Cast-In-Place Reinforced Concrete Frame of a Multistory Building “Kazan-21v”]. Patent holder I.I. Mustafin. No. 2004139244/03 ; appl. 27.12.2004 ; publ. 10.05.2005. Bulletin no. 22. (In Russian)
  7. Kazina G.A. Sovremennye zhelezobetonnye konstruktsii seysmostoykikh zdaniy: otechestvennyy i zarubezhnyy opyt [Modern Reinforced Concrete Structures of Earthquake-Resistant Buildings : Domestic and Foreign Experience]. Moscow, VNIIS Publ., 1981, 25 p. (Construction and Architecture. Series 8. Building Structures) (In Russian)
  8. Mordich A.I. Sborno-monolitnye i monolitnye karkasy mnogoetazhnykh zdaniy s ploskimi raspornymi perekrytiyami [In-cast and Precast Joists and Cast-In-Place Frames of Multi-Storey Buildings with Flat Space Slabs]. Montazhnye i spetsial’nye raboty v stroitel’stve [Erecting and Special Works in Construction]. 2001, no. 8—9, pp. 10—14. (In Russian)
  9. Koyankin A.A., Mitasov V.M. Nekotorye rezul’taty naturnykh ispytaniy fragmenta karkasnogo zdaniya v sborno-monolitnom ispolnenii [Some Results of Field Investigations of a Fragment of Precast-Cast-In-Place Frame Building]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2015, no. 5, pp. 18—20. (In Russian)
  10. Mordich A.I., Belevich V.N., Simbirkin V.N., Navoy D.I. Opyt prakticheskogo primeneniya i osnovnye rezul’taty naturnykh ispytaniy sborno-monolitnogo karkasa BelNIIS [Experience of Practical Use and Main Results of In-Place Tests of Precast and Cast-In-Place Frame BelNIIS]. BST: Byulleten’ stroitel’noy tekhniki [BST — Bulletin of Construction Equipment]. 2004, no. 8, pp. 8—12. (In Russian)
  11. Koprivitsa B. Primenenie karkasnoy sistemy IMS dlya stroitel’stva zhilykh i obshchestvennykh zdaniy [The Use of Frame System IMS for Construction of Residential and Industrial Buildings]. Zhilishchnoe stroitel’stvo [Housing Construction]. 1984, no. 1, pp. 30—32. (In Russian)
  12. Mordich A.I., Sadokho V.E., Podlipskaya I.I., Taratynova N.A. Sborno-monolitnye prednapryazhennye perekrytiya s primeneniem mnogopustotnykh plit [In-cast and Precast Joists Stressed Slabs with Use of Hollow-Core Slab]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 1993, no. 5, pp. 3—6. (In Russian)
  13. Weber H., Bredenbals B., Hullman H. Bauelemente mit Gittertragern. Hannover, Institut fur Industrialisierung des Buens, 1996, 24 p.
  14. Bausysteme mit Gittertragern. Fachgruppe Betonbauteile mit Gittertragern im BDB. Bonn, 1998, 40 p.
  15. Janti F. Sborno-monolitnyy karkas «Delta» [Precast-cast-in-place frame “Delta”] Prospekt kompanii «Deltatek OY». Prospectus of the Company “Deltatek OY”]. 1998, 6 p.
  16. Dimitrijevic R. A Prestressed «Open» System from Jugoslavia. Système «Ouvert» Précontraint Yougoslave. Batiment Informational, Building Research and Practice. 1978, vol. 6, no. 4, pp. 244, 245—249. Nauchno-tekhnicheskiy referativnyy sbornik TsINIS [Science and Technical Abstract Collection of the Central Institute of Scientific Information on Construction]. 1979, vol. 14, no. 3, pp. 8—12. (In Russian)
  17. Pessiki S., Prior R., Sause R., Slaughter S. Review of Existing Precast Concrete Gravity Load Floor Framing System. PCI Journal. 1995, vol. 40, no. 2, pp. 52—67.
  18. Schwerm D., Jaurini G. Deskensysteme aus Betonfertigteilen. Informationsstelle Beton-Bauteile, Bonn, 1997, 37 p.
  19. Koyankin A.A., Mitasov V.M. Eksperimental’nye issledovaniya raboty stykovogo soedineniya rigelya s kolonnoy v sborno-monolitnom perekrytii [Experimental Study of the Operation of the Bolt Joint of a Bearer with a Column in Precast-Monolithic Ceiling]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2015, no. 5, pp. 27—34. (In Russian)
  20. Mitasov V.M., Koyankin A.A. Rabota diska sborno-monolitnogo perekrytiya [Operation of a slab of cast over precast joists]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 2014, no. 3, pp. 103—110. (In Russian)

Download

Experimental research of slab cast over precast joists with prestressed reinforcement

Vestnik MGSU 3/2016
  • Koyankin Aleksandr Aleksandrovich - Siberian Federal University (SibFU) Candidate of Technical Sciences, Associate Professor, Department of Building Structures and Control Systems, Siberian Federal University (SibFU), 79 Svobodny Avenue, Krasnoyarsk, 660041, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Topakova Aleksandrovna Topakova - Siberian Federal University (SibFU) Master student, Department of Building Structures and Control Systems, Siberian Federal University (SibFU), 79 Svobodny Avenue, Krasnoyarsk, 660041, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 19-25

At the present time reinforced concrete is the main construction material in civil and industrial construction. Cast-in-place and precast construction is gradually becoming a more widespread type of house-building, but still there is a lack of data, including experimental data, which allows evaluating the stress and strain state of a construction of a slab cast over precast joists. Experimental research of stress and strain state of slab cast over precast joists with prestressed reinforcement was carried out. An experimental model of a fragment of a hybrid precast/cast-in-place building was produced and tested (reduction scale 1:6). The experimental investigations of slab cast over precast joists with prestressed reinforcement proved that the construction solution of the framework offered in the previous works of the authors possess good stiffness, crack-resistance and bearing capacity. It well fits for constructing the slabs of long spans in residential and public buildings.

DOI: 10.22227/1997-0935.2016.3.19-25

Download

EXPERIENCE OF TRANSFORMATION OF WEAK WATER-SATURATED SOILS USING PILES OF FINITE STIFFNESS

Vestnik MGSU 3/2018 Volume 13
  • Ter-Martirosyan Zaven Grigor’evich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Science, Professor of the Department of Soil Mechanics and Geotechnics, Main Researcher at the Research and Education Center “Geotechnics”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Ter-Martirosyan Armen Zavenovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor of the Department of Soil Mechanics and Geotechnics, Head of Research and Education Center “Geotechnics”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Sidorov Vitaliy Valentinovich - National Research Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Assistant Professor of the Department Soil Mechanics and Geotechnics, Researcher at the Research and Education Center «Geotechnics», National Research Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 271-281

Subject: an analytical solution to the problem of interaction of the pile and the raft plate with the surrounding soil taking into account the possibility of expansion of the pile’s shaft is given. Closed solutions are obtained for determination of stresses in the pile’s shaft and in the soil under the raft plate. We take into account the effect of prestress of the base after compaction on formation of stress-strain state during construction and operation of structures. These solutions are relevant for compaction piles made of crushed stone or soil-cement piles whose stiffness is comparable with the stiffness of the surrounding soil. Research objectives: determination of the average strength and deformation parameters of weak soils subjected to transformation using the piles of finite stiffness made of loose gravel material and soil-cement material; comparative analysis of the obtained results with the data of in situ tests on a construction site. Materials and methods: when solving the problem of interaction between the pile and the surrounding soil with the expansion of pile’s shaft, analytical solutions based on well-known expressions of classical soil mechanics and solid mechanics are used. Experimental studies were carried out on a certified laboratory equipment and with the help of field methods regulated by the existing design codes. Results: the presented technique of improving mechanical parameters of soils and the method of their calculation in the transformed foundation allow us to determine the average characteristics of strength and deformability of the entire foundation. These techniques are necessary for analysis of the transformed foundation by two types of limit states in the process of designing the structure by analytical and numerical methods. Conclusions: the resulting dependencies and the proposed techniques for designing reinforcement of the base with the help of pile-drains are used on real construction sites. We present the results of large-scale tests at the experimental site for construction of a large energy facility in Russia as well as at the housing construction site in the Central region of the Russian Federation.

DOI: 10.22227/1997-0935.2018.3.271-281

Download

Results 1 - 8 of 8