RESEARCH OF BUILDING MATERIALS

Raising the biostability of wood by modifying its surface by boron-nitrogen compounds

Vestnik MGSU 11/2013
  • Stepina Irina Vasil'evna - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of General Chemistry, Moscow State University of Civil Engineering (MGSU), Yaroslavskoye shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kotlyarova Irina Aleksandrovna - Bryansk State Technical University (BGTU) Candidate of Technical Sciences, Associate Professor, Department of Materials Science and Engineering, Bryansk State Technical University (BGTU), 7, Bul'var 50-letiya Oktyabrya, Bryansk, 241035, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Sidorov Vyacheslav Ivanovich - Moscow State University of Civil Engineering (MGSU) Doctor of Chemical Sciences, Professor, Professor, Department of General Chemistry, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Myasoedov Evgeniy Mikhaylovich - Moscow State University of Mechanical Engineering (MAMI); Moscow State University of Civil Engineering (MGSU) Candidate of Chemical Sciences, Associate Professor, Department of General and Analytical Chemistry, Moscow State University of Mechanical Engineering (MAMI); Professor, Department of General Chemistry, Moscow State University of Civil Engineering (MGSU), Moscow State University of Mechanical Engineering (MAMI); Moscow State University of Civil Engineering (MGSU), 38 Bol’shaya Semenovskaya str., Moscow, 107023, Russian Federation; 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 149-154

The author studies the biological stability of pine wood samples modified by immersion for 3 hours in 10 %, 30 % and 50 % aqueous solutions of monoand diethanolamine (N → B) threehydrousborat (composition 1 and 2, respectively). After drying to constant weight, the surface of the samples according to the all-Union State Standard 9.048 was infested with a suspention with a concentration of 1—2 million / ml of fungic spores. The samples were placed into an open petri dish in a desiccator and maintained under conditions optimal for the growth of mycelium.During the experiment, the following results were obtained. Unmodified wood samples were covered with mushrooms at the 80—85 % of the surface. A rapid development of all kinds of test cultures and sporulation of the fungus was observed. The samples of wood, modified by the 10 % aqueous solutions of compounds 1 and 2, revealed heavy mycelium growth of mold and wood-destroying fungi. The development stage of fungi according to the All-Union State Standard 9.048—89 corresponds to 3 points. Wood samples, modified by 30 % aqueous solutions, are more fungus-resistant, their score is2 points. The modification by 50 % aqueous solutions of compounds 1 and 2 provides the wood with 100 % biological stability in regard to the mold and wood-destroying fungi.Climatic tests were carried out in the heat and moisture chamber G-4 according to All-Union State Standard 9.308—85 (Method 6) and 9.054—75 (method 1). Test results showed that due to such properties as weather resistance and fungal resistance, the protective action durability of the developed compositions makes up 5 years for 10 % solutions of compounds 1 and 2, up to 10 years for the 30 % solutions and for 50 % solutions — not less than 20 years. Thus, 50 % aqueous solutions of compositions 1 and 2 (Ksilostat and Ksilostat +) are the most effective for wood modification, which could provide the modified sample with 100 % biological stability for at least 20 years as a result of surface treatment.

DOI: 10.22227/1997-0935.2013.11.149-154

References
  1. Shupe T.S., Lebow S.T., Ring D. Causes and control of wood decay, degradation and stain. Res. & Ext. Pub, no. 2703, Zachary, LA, Louisiana State University Agricultural Center, 2008, 27 p.
  2. Mzhachikh E.I., Sukhareva L.A., Yakovlev V.V. Biokorroziya i fiziko-khimicheskie puti povysheniya dolgovechnosti pokrytiya [Biocorrosion and Physico-chemical Ways to Improve the Coating Durability]. Praktika protivokorrozionnoy zashchity [Experience of Anticorrosve Protection]. 2006, no. 1, pp. 55—58.
  3. Pokrovskaya E.N., Koval'chuk Yu.L. Khimiko-mikologicheskie issledovaniya i uluchshenie ekologii vnutri zdaniy [Chemical Analysis, Mycological Examination and Improvement of the Indoor Ecology]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 8, pp. 181—188.
  4. Lugauskas A., Yaskelyavichyus B. Mikologicheskoe sostoyanie zhilykh pomeshcheniy Bil'nyusa [Mycological State of the Accomodations in Bilnyusa]. Mikologiya i fitopatologiya [Mycology and Phytophathology]. 2009, vol. 43, no. 3, pp. 207—215.
  5. Dashko R.E., Kotyukov P.V. Issledovanie bioagressivnosti podzemnoy sredy Sankt-Peterburga po otnosheniyu k konstruktsionnym materialam transportnykh tonneley i fundamentov [The Study on the Bioagressiveness of the Underground Environment in St. Petersburg in Relation to Construction Materials of Transport Tunnels and Basements]. Zapiski Gornogo Instituta [Proceedings of the Mining Academy]. 2007, vol. 172, pp. 217—220.
  6. Kukoleva D.A., Akhmetshin A.S., Stroganov I.V., Stroganov V.F. Biopovrezhdenie polimernykh kompozitsionnykh stroitel'nykh materialov [Biodeterioration of Polymer Composite Building Materials]. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta [Proceedings of Kazan State University of Architecture and Engineering]. 2009, no. 2 (12), pp. 257—262.
  7. Lebow S.T. Wood Preservation. Wood Handbook: Wood as an Engineering Material. Gen. Tech. Rep. FPL–GTR–190. Madison, WI, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2010, chapter 15.
  8. Lebow S., Lebow P., Halverson S. Penetration of boron from topically applied borate solutions. Forest Products Journal. 2010, 60(1), pp. 13—22.
  9. Kotlyarova I.A., Koteneva I.V., Sidorov V.I. Modifikatsiya tsellyulozy monoetanolamin(N?B)trigidroksiboratom [Modification of Cellulose by Monoethanolamine(N?B) threehydrousborat]. Khimicheskaya promyshlennost' segodnya [Chemical Industry Today]. 2011, no. 12, pp. 26—30.
  10. Koteneva I.V., Sidorov V.I., Kotlyarov I.A. Analiz modifitsirovannoy tsellyulozy metodom IK-spektroskopii [Analysis of the Modified Cellulose by the Infrared Spectroscopy]. Khimiya rastitel'nogo syr'ya [Chemistry of Plant Materials]. 2011, no.1, pp. 21—24.

Download

INCREASE OF ADHESION OF PAINT-AND-LACQUER MATERIALS TO WOOD THROUGH THE MODIFICATION OF ITS SURFACE BY BORON-NITROGEN COMPOUNDS

Vestnik MGSU 7/2012
  • Koteneva Irina Vasil'evna - Moscow State University of Civil Engineering (MSUCE) Candidate of Technical Sciences, Senior Lecturer, Department of General Chemistry, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kotlyarova Irina Aleksandrovna - Bryansk State Technical University (BGTU) Candidate of Technical Sciences, Associate Professor, Department of Materials Science and Engineering, Bryansk State Technical University (BGTU), 7, Bul'var 50-letiya Oktyabrya, Bryansk, 241035, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Sidorov Vyacheslav Ivanovich - Moscow State University of Civil Engineering (MGSU) Doctor of Chemical Sciences, Professor, Professor, Department of General Chemistry, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 141 - 146

The authors demonstrate that the efficiency of protection of wooden structures, covered with paints and lacquer materials, from the influence of the environment, depends on the adhesion size.
It is common knowledge that improvement of adhesion of capillary-porous materials to the wood, and, hence, the increase of the service life of the sheeting requires the reduction in the dimensions of the wood surface, as the reduction of diameters of capillaries leads to the growth of forces of capillary condensation and to the increase in the depth of penetration of paints into the material.
Adhesion of a water-soluble acrylic paint and organic-soluble enamels to the surface of the wood modified by boron-nitrogen compounds and to unmodified wood is the subject of the research. It is identified that the increase in the adhesive durability of paint and varnish coverings if glued to the surface of the wood modified by boron-nitrogen compounds, is driven by the growth of the polarity of a substrate and the reduction of dimensions of the wood surface.

DOI: 10.22227/1997-0935.2012.7.141 - 146

References
  1. Tarasov S.M., Evdokimov Yu.M. Istoriya tekhnologii glubokoy pererabotki drevesiny i nauki ob adgezii [History of Technology of Advanced Processing of Wood and the Adhesion Science]. Moscow, Moscow State Forest University Publ., 2010, 40 p.
  2. Evdokimov Yu.M. Adgeziya. Ot makro- i mikrourovnya k nanosistemam [Adhesion. From Macro- and Microlevels to Nanosystems]. Moscow, Moscow State Forest University Publ., 2011, 208 p.
  3. Sanaev V.G. Drevesinovedenie v sisteme lesnogo khozyaystva [Study of Wood within the Framework of Forestry Management]. Moscow, Moscow State Forest University Publ., 2007, 180 p.
  4. Rudnev S.D. Adgezionnaya priroda prochnosti rastitel’noy tkani [Adhesive Nature of the Plant Tissue Strength]. Khranenie i pererabotka sel’khozsyr’ya [Storage and Processing of Agricultural Materials]. 2011, no. 8, pp. 50—53.
  5. Evdokimov Yu.M. Osobennosti adgezii v mikro- i nanosistemakh [Peculiarities of Adhesion within Micro- and Nanosystems]. Klei. Germetiki. Tekhnologii [Glues. Sealants. Technologies]. 2011, no. 3, pp. 2—8.
  6. Yakh’yaeva Kh.Sh., Zaikov G.E., Deberdeev T.R., Ulitin N.V., Stoyanov O.V., Kozlov G.V., Magomedov G.M., Nasyrov I.I. Strukturnye osnovy mezhfaznoy adgezii (nanoadgezii) v polimernykh kompozitakh [Structural Basics of Phase-to-Phase Adhesion (Nano-adhesion) of Polymer Composites]. Vestnik Kazanskogo tekhnologicheskogo universiteta [Proceedings of Kazan State University of Technology]. 2012, no. 5, pp. 68—70.
  7. Pokrovskaya E.N., Bel’tsova T.G. Fizicheskaya khimiya. Khimiya atmosfery. [Physical Chemistry. Chemistry of the Atmosphere]. Moscow, Stroitel’nykh Vuzov Publ. [Publishing House of Institutions of Higher Education in Civil Engineering]. 2006, 88 p.
  8. Kozhevnikov D.A. Kompozitsionnye materialy konstruktsionnogo naznacheniya na osnove sovmeshchennykh napolniteley i modifitsirovannykh kleev [Structural Compounds Based on Combined Fillers and Modified Glues]. Vestnik Kostromskogo gosudarstvennogo tekhnologicheskogo universiteta [Proceeding of Kostroma State University of Technology]. 2011, no. 6, pp. 44—47.
  9. Kononenko A.S., Gaydar S.M. Adgezionnaya prochnost’ germetikov i nanokompozitsiy na ikh osnove [Adhesive Strength of Sealants and Nanocompositions on Their Basis]. Remont, vosstanovlenie, modernizatsiya [Renovation, Restoration, Modernization]. 2011, no. 6, pp. 38—42.
  10. Kotlyarova I.A., Koteneva I.V., Myasoedov E.M., Sidorov V.I. Izuchenie kapillyarno-poristoy struktury modifitsirovannoy drevesiny [Study of Capillary-porous Structure of Modified Wood]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 4, vol. 3, pp. 106—111.

Download

Results 1 - 2 of 2