ESTIMATION OF SPORTS-TECHNICAL READINESS OF STUDENTS OF METHODICAL BRANCH «FOOTBALL» MSUCE

Vestnik MGSU 4/2012
  • Shamonin Andrey Valentinovich - Moscow State University of Civil Engineering (MSUCE) candidate of pedagogical sciences, associate professor, associate professor of chair of physical training and sports, Moscow State University of Civil Engineering (MSUCE), 26, Jaroslavskoe shosse, Moscow, 129337, Russia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 231 - 234

Increase of sports-technical skill in sports occurs on the basis of last achievements of the theory and physical training and sports practice. Development of football isn't possible without search and introduction in training process of optimum pedagogical models of perfection of physical and technical readiness of football players. Such pedagogical models should be applied, as in groups of initial preparation, so at the subsequent grade levels, including in student's football. Modern training process (pedagogical model), should be under construction on objective indicators of physical, technical and special readiness (so-called feedback). However, the estimation of sports-technical readiness at sports schools on football is reduced only to testing of speed, jumps, juggling, dribbling and a shoot for goal. The same criteria are applied and in student's football. Unfortunately, the given control exercises not in a condition to the full to reflect level of physical and technical readiness of the football player. For more objective estimation of special readiness it is necessary to use the test tasks revealing a level of development of coordination abilities of game structure game and competitive activity (game in football). It will allow trainers to have fuller picture of readiness of the football player, in respect of its professional (football) skills. As a result coach have possibility to trace level of a condition of the various parties of sports readiness (physical, technical and coordination) student's youth engaged in football at each stage of long-term preparation.

DOI: 10.22227/1997-0935.2012.4.231 - 234

References
  1. Matveev L.P. Teoriya i metodika fizicheskoy kultury [Theory and a physical training technique]. Moscow; Physical culture and sports, 1991. 543 p.
  2. Averyanov I.V. Metodika sovershenstvovaniya kinesteticheskikh koordinatsionnykh sposobnostey futbolistov 10-11 let [Technique of perfection coordination abilities of football players of 10-11 years]. Tyumen, 2008. 26 p.
  3. Godik M.A. Fizicheskaya podgotovka futbolistov [Physical preparation of football player]. Moscow: Terra-sports, Olympia The Press, 2006. 272 p.
  4. Golomazov S.V. Футбол. Futbol [Football]. Moscow: ТВТ The Battalion, 2006. 80 p.
  5. Portnov JU.M Sportivnye igry. [Sports games]. Moscow: Academy Publis., 2004. 400 p.
  6. Vitkovski Z. Koordinatsionye sposobnosti futbolistov: diagostika, struktura,ontogenez [Coordination abilities of young football players: diagnostics, structure, ontogenesis]. Moscow, 2003. 232 p.
  7. Friha Mohammed Habib Razvitie koordinatsii dvizheniy i prostranstvennoy oreirntatsii futbolistov 11-13 let [Development of coordination of movements and spatial orientation of young football players of 11-13 years]. St.-Petersburg, 1998. 21 p.

Download

Strength of the expandedstretching profile: tests and mathematical modeling

Vestnik MGSU 12/2013
  • Sinelnikov Aleksey Sergeevich - Saint Petersburg State Polytechnical University (SPbGPU) postgraduate student, Department of Unique Buildings and Structures Engineering, Saint Petersburg State Polytechnical University (SPbGPU), 29 Polytechnicheskaya, st., St.Petersburg, 195251, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Orlova Anna Vladimirovna - Saint Petersburg State Polytechnical University (SPbGPU) student, Department of Unique Buildings and Structures Engineering, Saint Petersburg State Polytechnical University (SPbGPU), 29 Polytechnicheskaya, st., St.Petersburg, 195251, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 41-54

This summary report is based on the experimental and numerical research of thin-walled cross-section’s compression resistance carried out in St. Petersburg State Polytechnical University. Current situation on the Russian market concerning the usage of cold-formed thin walled cross-sections is aimed at finding out a base foundation to start up a stipulation of the elements under discussion in the building industry. Some questions about the compression resistance of such cross-sections were raised at different conferences by scientific community and such companies as Arsenal ST, Baltprofile (Russia) and Rautaruukki Oyj (Finland). In this field a number of Doctoral theses have been defended during recent years in Russia (A.R. Tusnin, G.I. Belyy, I.V. Astakhov, D.V. Kuz'menko). Steel galvanized Cand U-profiles and thermo-profiles are the types of thin-walled cross-sections are normally used in small houses construction. Thermo-profiles have slots in webs that decrease the thermal flow through the web, but have negative effect on strength of the profiles. Reticular-stretched thermo-profile is a new type of thin-walled cross-sections that found its place on Russian market. These profiles were an object of the research. The carried out investigations included tests to prove the compression resistance of the thin-walled cross-sections. The compression tests as a result showed the behavior of stud’s profile under critical load. The specimen was compressed under various loads and deformation was recorded. In order to get buckling force a load-deformation diagram was plotted and analyzed. Analytical modeling of thin-walled cross-sections was done with contemporary analysis software (SCAD Office) using finite element method (FEM). During the modeling process the thin-walled profile based on shelland bar-elements were created and buckling analysis task showed good results.

DOI: 10.22227/1997-0935.2013.12.41-54

References
  1. Shatov D.S. Konechnoelementnoe modelirovanie perforirovannykh stoek otkrytogo secheniya iz kholodnognutykh profiley [Finite Element Modelling of Perforated Stays of Open Section Made of Cold-bent sections]. Inzhenerno stroitel'nyy zhurnal [Engineering Construction Journal]. 2011, no. 3, pp. 32—34.
  2. Gordeeva A.O., Vatin N.I. Raschetnaya konechno-elementnaya model' kholodnognutogo perforirovannogo tonkostennogo sterzhnya v programmno-vychislitel'nom komplekse SCADOffice. Inzhenerno stroitel'nyy zhurnal [Calculation Finite Element Model of a Cold-formed Perforated Thin-wall Shank in Programming and Computing Suite SCADOffice]. 2011, no. 3, pp. 36—46.
  3. Zhmarin E.N. Mezhdunarodnaya assotsiatsiya legkogo stal'nogo stroitel'stva [International Assosiation of Light Steel Engineering]. Stroitel'stvo unikal'nykh zdaniy i sooruzheniy [Construction of Unique Buildings and Structures]. 2012, no. 2, pp. 27—30.
  4. Yurchenko V.V. Proektirovanie karkasov zdaniy iz tonkostennykh kholodnognutykh profiley v srede «SCADOffice» [Buildings Framework Modellng Made of Thin-wall Cold-formed Profiles in SCADOffice]. Inzhenerno stroitel'nyy zhurnal [Engineering Construction Journal]. 2010, no. 8, pp. 38—46.
  5. Vatin N.I., Popova E.N. Termoprofil' v legkikh stal'nykh stroitel'nykh konstruktsiyakh [Thermal Profile in Light Steel Building Structures]. Saint Petersburg, SPbGPU Publ., 2006, 63 p.
  6. Kolesov A.I., Lapshin A.A., Valov A.V. Sovremennye metody issledovaniya tonkostennykh stal'nykh konstruktsiy [Modern Methods of Examining Thin-Wall Steel Structures]. Privolzhskiy nauchnyy zhurnal [Volga Scientific Journal]. 2007, no. 1, pp. 28—33.
  7. Kretinin A.N., Krylov I.I. Osobennosti raboty tonkostennoy balki iz gnutykh otsinkovannykh profiley [Operation Features of Thin-wall Beam Made of Roll-Formed Zink-Coated Sections]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel'stvo [News of Institutions of Higher Education. Engineering]. 2008, no. 6, pp. 1—11.
  8. Hartmut Pasternak and John Ermopoulos. Design of Steel Frames with Slender Joint-panels. Journal of Constructional Steel Research. 1995, vol. 35, no. 2, pp. 165—187.
  9. Kesti J. Local and Distortional Buckling of Perforated Steel Wall Studs. Dissertation for the Degree of Doctor of Science in Technology. Espoo, 2000, 101 p. + app.19 p.
  10. Markku Heinisuo. Comparative Study of Multiple Criteria Decision Making Methods for Building Design. Advanced Engineering Informatics. October 2012, vol. 26, no. 4, pp. 716—726.
  11. Tusnin A.R. Chislennyy raschet konstruktsiy iz tonkostennykh sterzhney otkrytogo profilya [Numerical Calculations of the Structures Made of Thin-Wall Shanks of Open Profile]. Moscow, ASV Publ., 2009, 143 p.
  12. Tusnin A.R. Osobennosti chislennogo rascheta konstruktsiy iz tonkostennykh sterzhney otkrytogo profilya [Features of Numerical Calculations of the Structures Made of Thin-Wall Shanks of Open Profile]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2010, no. 11, pp. 60—63.
  13. Perel'muter A.V., Slivker V.I. Raschetnye modeli sooruzheniy i vozmozhnost' ikh analiza [Calculation Models of Structures and Possibilities of Their Analysis]. Moscow, DMK Press Publ., 2002, 618 p.
  14. Slivker V.I. Stroitel'naya mekhanika [Structural Mechanics]. Moscow, ASV Publ., 2005, 736 p.
  15. Perel'muter A.V., Kriksunov E.Z., Karpilovskiy V.S., Malyarenko A.A. Integrirovannaya sistema dlya rascheta i proektirovaniya nesushchikh konstruktsiy zdaniy i sooruzheniy SCAD Office [Integrated System for Calculation and Design of the Bearing Structuresnof Buildings in SCAD Office]. Novaya versiya, novye vozmozhnosti. Inzhenerno stroitel'nyy zhurnal [New Version, New Possibilities. Engineering Construction Journal]. 2009, no. 2, pp. 10—12.
  16. Kriksunov E.Z., Perel'muter A.V., Yurchenko V.V. Proektirovanie flantsevykh soedineniy ramnykh uzlov [Design of Flanfe Seams of Frame Nods]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2010, no. 2, pp. 33—37.
  17. Winter G. Light Gauge (Thin-Walled) Steel Structures for Building in the U.S.A. Preliminary Publication, 4th Congress of the International Association for Bridge and Engineering, 1952, p. 524.
  18. Pekoz T. Development of a Unified Approach to the Design of Cold-formed Steel Members. Research Report CF 87-1, American Iron and Steel Institute, 1987.
  19. Hancock G.J. Light Gauge Construction. Progress in Structural Engineering and Materials. 1997, pp. 25—26.
  20. Gioncu V. General theory of coupled instabilities. Thin-Walled Structures, 1994, p. 19(2—4).
  21. Belyy G.I., Astakhov I.V. Issledovanie vliyaniya razlichnykh faktorov na prostranstvennuyu ustoychivost' sterzhnevykh elementov iz kholodnognutykh profiley [Research on the Influence of Various Factors on Spatial Stability of Axial Elements Made of Cold-Formed Profiles]. Aktual'nye problemy sovremennogo stroitel'stva: Doklady 68-y nauchnoy konferentsii professorov, prepodavateley, nauchnykh rabotnikov, inzhenerov i aspirantov universiteta [Current Issues of Contemporary Engineering: Reports of the 68th Scientific Conference of the Professors, Lecturers, Research Workers, Engineers and Postgraduate Students of the University]. Saint Petersburg, SPbGASU Publ., 2011, p. 27.
  22. Belyy G.I. Raschet uprugoplasticheskikh tonkostennykh sterzhney v poprostranstvenno-deformiruemoy skheme [Calculation of Thin-Wall Elastic-Plastic Shank in Spatial Deformable Scheme] Stroitel'naya mekhanika sooruzheniy: mezhvuzovskiy tematicheskiy sbornik trudov [Structural Mechanics of Buildings: Interuniversity Thematical Collection of Works]. LISI. 1983, no. 42, pp. 40—48.
  23. Cheng Y., Schafer B.W. Simulation of Cold-formed Steel Beams in Local and Distortional Buckling with Applications to the Direct Strength Method. Journal of Constructional Steel Research. 2007, vol. 63, no. 5, pp. 581—590.
  24. Rasmussen K.J.R. Experimental Investigation of Local-overall Interaction Buckling of Stainless Steel Lipped Channel Columns. Journal of Constructional Steel Research. 2009, vol. 65, no. 8—9, pp. 1677—1684.
  25. Smaznov D.N. Ustoychivost' pri szhatii sostavnykh kolonn, vypolnennykh iz profiley iz vysokoprochnoy stali [Stability in Compression of Composite Columns Made of High-tension Steel Profiles]. Inzhenerno stroitel'nyy zhurnal [Engineering Construction Journal]. 2009, no. 3, pp. 42—49.
  26. Smaznov D.N. Konechno-elementnoe modelirovanie stoek zamknutogo secheniya iz kholodnognutykh profiley [Finite Element Modeling of the Stands of Closed Section Made of Cold-formed Profiles]. Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta [Scientific and Research News of Saint Petersburg State Polytechnic University]. 2011, no. 123, pp. 334—337.

Download

RESEARCH OF FORMATION OF THE PORE STRUCTURE OF CEMENT SYSTEMS THAT HARDEN AT LOW AND NEGATIVE TEMPERATURES

Vestnik MGSU 3/2012
  • Pashkevich Stanislav Aleksandrovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, head, Laboratory of Climatic Tests, Scientific and Research Institute of Construction Materials and Technologies, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 656-14-66; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Pustovgar Andrey Petrovich - Moscow State University of Civil Engineering (National Research University) (MGSU) candidate of technical sciences, assistant professor, Vice Rector for Research, scientific director of the Research Institute of Building Materials and Technologies (SRI SMiT), Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Adamtsevich Aleksey Olegovich - Moscow State University of Civil Engineering (National Research University) (MGSU) candidate of technical sciences, senior research worker of Head of the Department of Scientific Policy, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Golunov Sergey Anatolevich - Moscow State University of Civil Engineering (MSUCE) Deputy Director, Scientific and Research Institute of New Building Materials and Technologies (NII «SMiT»), Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Shishiyanu Natalya Nikolaevna - Moscow State University of Civil Engineering (MSUCE) master student, Department of Construction of Nuclear Power Plants, Junior Researcher, Scientific and Research Institute of New Building Materials and Technologies (NII «SMiT»), Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 120 - 125

The article covers the formation of the pore structure of cement systems that harden at low and negative temperatures. Temperature fluctuations that accompany the hydration of cement systems can produce a substantial impact onto the chemical activity of the water in the course of hydration. These factors can produce an adverse impact on the formation of the structure of the cement stone and impair its performance characteristics. The formation of the structure of cement systems is dependent on the impact of specialized additives, including antifreeze agents that facilitate hydration at low and negative temperatures. The research of their action and the nature of their influence on the formation of the microstructure of the cement stone facilitate the purposeful adjustment of their properties. Therefore, modification of cement systems by specialized antifreeze components is a relevant objective of scientific and practical research.
Research of a classical cement system (a benchmark composition) and a cement system modified by a specialized antifreeze polymer-based additive (a modified composition) was performed to identify the impact of antifreeze additives onto the process of formation of its pore space.
Upon completion of the research project described in the article, the authors have concluded that antifreeze additives facilitate hydration of cement at low and negative temperatures and cause regular formation of the pore structure of the cement stone.

DOI: 10.22227/1997-0935.2012.3.120 - 125

References
  1. Bazhenov Yu.M. Sposoby opredeleniya sostava betona razlichnykh vidov [Methods of identification of Composition of Various Types of Concrete]. Moscow, Stroyizdat, 1975.
  2. Usherov-Marshak A.V., Sopov V.P., Zlatkovskiy O.A. Fiziko-khimicheskie osnovy vliyaniya moroza na tverdenie betona [Physical and Chemical Principles Underlying the Influence of Frost onto Concrete Hardening], Naukovo-praktichni problemi suchasnogo zalizo bstona, no. 50, K, NDIBK, 1999, pp. 391—394.
  3. Rukovodstvo po primeneniyu khimicheskikh dobavok v betone [Guide to the Use of Chemical Additives to the Concrete], NIIZhBGosstroya SSSR, Moscow, Stroyizdat, 1980.

Download

COMPUTER-ASSISTED CONTROL OF ACADEMIC PERFORMANCE IN ENGINEERING GRAPHICS WITHIN THE FRAMEWORK OF DISTANCE LEARNING PROGRAMMES

Vestnik MGSU 6/2012
  • Tel'noy Viktor Ivanovich - Moscow State University of Civil Engineering (MSUCE) Candidate of Military Sciences, Associated Professor, Department of Descriptive Geometry and Engineering Graphics, +7 (499) 183-24-83, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Ivashchenko Andrey Viktorovich - Moscow State University of Civil Engineering (MSUCE) Candidate of Technical Sciences, Associated Professor, Department of Descriptive Geometry and Engineering Graphics, +7 (499) 183-24-83, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 136 - 141

Development of computer-assisted computer technologies and their integration into the academic activity with a view to the control of the academic performance within the framework of distance learning programmes represent the subject matter of the article.
The article is a brief overview of the software programme designated for the monitoring of the academic performance of students enrolled in distance learning programmes. The software is developed on Delphi 7.0 for Windows operating system. The strength of the proposed software consists in the availability of the two modes of its operation that differ in the principle of the problem selection and timing parameters.
Interim academic performance assessment is to be performed through the employment of computerized testing procedures that contemplate the use of a data base of testing assignments implemented in the eLearning Server media. Identification of students is to be performed through the installation of video cameras at workplaces of students.

DOI: 10.22227/1997-0935.2012.6.136 - 141

References
  1. Monakhov B.E., Tel’noy V.I. Izuchenie inzhenernoy grafiki s ispol’zovaniem distantsionnykh informatsionnykh tekhnologiy [The study of Engineering Graphics through the Use of Distance Learning Information Technologies]: Proceedings of the VI International Scientific and Practical Conference «Modern Information Technologies and IT education». Moscow, Moscow State University, 2011, pp. 354 — 357.
  2. Monakhov B.E., Tel’noy V.I. Obuchenie i kontrol’ znaniy po nachertatel’noy geometrii s ispol’zovaniem distantsionnykh obrazovatel’nykh tekhnologiy [Training and Assessment of Academic Performance in Descriptive Geometry through the Employment of Distance Learning Technologies]. Collection of selected works of the VI International Scientific and Practical Conference «Modern Information Technologies and IT education». Moscow, INTUIT.RU Publ., 2011, pp. 389—395.

Download

Improvement of methods for determining power and energy characteristics of fibre-reinforced concrete crack resistance

Vestnik MGSU 3/2019 Volume 14
  • Pukharenko Yuri V. - Saint Petersburg State University of Architecture and Civil Engineering (SPbGASU) Doctor of Technical Sciences, Professor, Head of the Department of Building Materials Technology and Metrology, Saint Petersburg State University of Architecture and Civil Engineering (SPbGASU), 4 2nd Krasnoarmeyskaya st., Saint Petersburg, 190005, Russian Federation.
  • Zhavoronkov Mikhail I. - Saint Petersburg State University of Architecture and Civil Engineering (SPbGASU) Assistant of Department of Building Materials Technology and Metrology, Saint Petersburg State University of Architecture and Civil Engineering (SPbGASU), 4 2nd Krasnoarmeyskaya st., Saint Petersburg, 190005, Russian Federation.
  • Panteleev Dmitry A. - Saint Petersburg State University of Architecture and Civil Engineering (SPbGASU) Candidate of Technical Sciences, Associate Professor of Department of Building Materials Technology and Metrology, Saint Petersburg State University of Architecture and Civil Engineering (SPbGASU), 4 2nd Krasnoarmeyskaya st., Saint Petersburg, 190005, Russian Federation.

Pages 301-310

Introduction. The actual problem of improving the methods of experimental studies of the properties of fibre-reinforced concrete obtained using various types of fibre is considered in the article. As a result of the analysis of the technical literature, some shortcomings of the existing test methods of one of the most important characteristics of fibre-reinforced concrete, crack resistance, were revealed. The aim of this study is to develop methods for determining the fibre-reinforced concrete crack resistance parameters. Materials and methods. The GOST 29167 standard is used as a basis for the development of a new method and device. Regulations of this standard pursue an aim of obtaining the most informative data about the material by plotting the dependences of test specimen deflections on the applied loads and determining with their assistance the power and energy parameters of the crack resistance. The test samples are presented by fibre-reinforced fine concrete beams made using steel wire fibre of circular cross-section and wave profile. Diagrams of the dependences of sample deflections on applied loads were plotted in the course of the tests for tension in bending. Calculations of power and energy parameters of crack resistance were conducted. Results. The device and method of testing the fibre-reinforced concrete crack resistance are developed and proved. A comparative analysis of the results of tests of steel fibre concrete samples is made. Conclusions. The proposed device and method allow researching influence of the fibre reinforcement parameters on fibre-reinforced concrete crack resistance parameters quickly and with minimal labour expenditures for preparation and tests. Increased adequacy of the obtained data promotes building up new trends in research and rapid introduction of fibre-reinforced concrete in the construction industry. As a result of the analysis of the obtained data, it is established that the proposed device and method can be recommended for research of the influence of fibrous reinforcement parameters on the obtained fibre-reinforced concrete properties and accumulation of statistical data for the development and improvement of normative and technical documents.

DOI: 10.22227/1997-0935.2019.3.301-310

Download

Results 1 - 5 of 5