RESEARCH OF BUILDING MATERIALS

RESEARCH OF SYNERGETIC PROPERTIES OF HIGH-STRENGTH STRUCTURAL STEEL 14Х2GMR IN THE AFTERMATH OF EXPOSURE TO HEAT TREATMENT

Vestnik MGSU 6/2012
  • Gustov Yuriy Ivanovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Profes- sor, Department of Machinery, Machine Elements and Process Metallurgy; +7 (499) 183-94-95, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Rus- sian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Allattouf Hassan Lattouf - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Mechanic Equip- ment, Details of Machines and Technology of Metals, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 79 - 82

The article represents a brief overview of the properties of steel type 14X2GMR (Russian standards), a high-performance synergetic structural steel exposed to different modes of heat treatment.
The author demonstrates that the best set of the steel properties was obtained upon its normalization (Option 5). An alternative option is Option 1 (water quenching). This steel demonstrates its ≈ 1,0, which indicates the proximity between the uniform δр value and the concentrated δc value as the constituents of δ, the elongation value.
The best set of δр ,Ψр ,p, c, Кзт and p/c values is demonstrated by the steel at the normal temperature of 20 °C. An alternative set of criteria properties is identified at -60 °С.
The final choice of the optimal heat treatment mode and the operating temperature is recommended to be based on the maximal values of = p/c and the static viscosity
c = 0,5(k - σT)1n[1/(1 - Ψ)].
Given the resistance of steel to cracking during welding (Δ= 1,5; PSK= -0,25<0), it can be recommended for heavy-duty welded parts and assemblies.

DOI: 10.22227/1997-0935.2012.6.79 - 82

References
  1. Bol’shakov V.I. Substrukturnoe uprochnenie konstruktsionnykh staley [Substructural Strengthening of Structural Steels], a monograph. Canada, 1998, 316 p.
  2. Spravochnik po spetsial’nym rabotam. Svarochnye raboty v stroitel’stve [Reference Book of Specialty Assignments. Welding in Construction]. Moscow, 1971, Part 1, 464 p.

Download

PRODUCTION ECOLOGICALLY OF SAFE BUILD MATERIALS ON BASIS OF PEAT AND GYPSUM

Vestnik MGSU 1/2012
  • Guyumdzhjan Perch Pogosovich - Ivanovo Institute of State Fire Fighting Service of Emergency Control Ministry of Russia Doctor of Technical Sciences, Ivanovo Institute of State Fire Fighting Service of Emergency Control Ministry of Russia, .
  • Vetrenko Tatjana Grigorjevna - Ivanovo State Architecturally-building University Candidate of Technical Sciences, Associate Professor, Associate Professor of Department of Hydraulics, Water supply and Sanitation +7-(4932)-32-85-40; fax: +7-(4932)-30-00-74, Ivanovo State Architecturally-building University, 20, 8-th March, Ivanovo, 153037, Russia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Vitalova Nina Mihajlovna - Ivanovo State Architecturally-building University Senior teacher of Department of Building Constructions +7-(4932)-38-01-48, Ivanovo State Architecturally-building University, 20, 8-th March, Ivanovo, 153037, Russia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 94 - 99

The study on the creation of composite materials based on peat use-cation gypsum binder with improved thermal characteristics which en-rectifying to apply it during the construction of various buildings.

DOI: 10.22227/1997-0935.2012.1.94 - 99

References
  1. Belkin N.M., Vinogradov G.V., Leonov A.I. Izmerenie vyazkosti i fiziko-mehanicheskih harakteristik materialov. Moscow, Nauka, 1968.
  2. Suvorov V.M. Teploizolyatsionnye materialy na osnove torfa. Tezisy sb. Fiziko-himiya torfa i sapropeley. Materialy XII Mezhdunarodnoy nauchno-tehnicheskoy konferentsii. Tver', 1984.
  3. Hudoverdyan V.M. Metody proektirovaniya sostava torfobetona. Erevan., Izd-vo Arm. SSR, 1950.
  4. Spravochnik po stroitel'nym materialam dlya zavodskih i prostroechnyh laboratoriy Moscow, Gosstrojizdat, 1961.
  5. Romanenkov I.G., Zigel'-Korn V.N. Ognestoykost' stroitel'nyh konstruktsiy i effektivnyh materialov. Moscow, Strojizdat, 1984.
  6. Afanas'ev A.E., Churaev N.V. Optimizacija processov sushki i strukturoobrazovanija v tehnologii torfjanogo proizvodstva. Moscow, Nedra, 1992.

Download

Results 1 - 2 of 2