Educing anisotropy of strength properties of foam concrete bricks used for constructing a wall for curtain wall systems

Vestnik MGSU 8/2015
  • Tsykanovskiy Evgeniy Yul’evich - LLC DIAT Candidate of Technical Sciences, honorable builder of Russia, recipient of prize of the Government of the Russian Federation in Science and Technology, Director General, LLC DIAT, 3 Marshala Sokolovskogo str., Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Alisultanov Ramidin Semedovich - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student, Assistant Lecturer, Department of Engineering Geodesy, Moscow State University of Civil Engineering (National Research University) (MGSU), ; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Oleynikov Aleksandr Vladimirovich - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student, Assistant Lecturer, Department of Engineering Geodesy, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kagan Mikhail Lazarevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Physical and Mathematical Sciences, Professor, Department of Higher Mathematics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation.
  • Pekov Islam Al’bertovich - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student, Department of Construction Materials and Products, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 92-100

Curtain wall systems are widely used in the modern construction at building industrial and civil buildings. Works of many Russian and foreign researchers are dedicated to investigation of such structures operation. The main task solved during the use of curtain wall systems is reduction of energy consumption for heating. In this regard the fa?ade systems may be fixed both at rather stable walls having though high thermal conductivity produced of brick and concrete and at the walls of aerated concrete (foam concrete) bricks having lower thermal conductivity. The authors offer preliminary results of the mechanical strength tests of foam concrete bricks. The anisotropy of strength under compression along different edges (axes) was educed, which reached up to 200 %. The authors underline the importance of account for anisotropy of strength properties of foam concrete bricks during the design of fa?ade systems and during monitoring of their state.

DOI: 10.22227/1997-0935.2015.8.92-100

References
  1. Bessonov I.V. Vliyanie temperaturno-vlazhnostnykh vozdeystviy na dolgovechnost’ fasadnykh sistem na osnove mineral’nykh vyazhushchikh [Influence of Temperature and Humidity on Durability of Facade Systems Based on Mineral Binders]. ALITinform: Tsement. Beton. Sukhie smesi [ALITinform: Cement. Concrete. Dry Mixes]. 2007, no. 1, pp. 35—41. (In Russian)
  2. TR 161-05. Tekhnicheskie rekomendatsii po proektirovaniyu, montazhu i ekspluatatsii navesnykh fasadnykh sistem [TR 161-05. Technical Recommendations on Design, Construction and Operation of Curtain wall Systems]. Pravitel’stvo Moskvy [The Government of Moscow]. Moscow, 2005, 15 p. (In Russian)
  3. Vorob’ev V.N. Navesnye fasadnye sistemy : problemy bezopasnosti, proektirovanie NFS, proizvodstvo montazhnykh rabot, krepezh, pozharnaya bezopasnost’, osnovnye pravila ekspluatatsii NFS [Curtain Wall Systems : the Issues of Safety, Design, Construction Works, Fixing, Fire Safety, Main Rules of Their Operation]. Vladivostok, Dal’Nauka Publ., 2011, 72 p. (In Russian)
  4. Granovskiy A.V., Kiselev D.A. Eksperimental’nye issledovaniya raboty ankernogo krepezha pri dinamicheskikh vozdeystviyakh [Experimental Research of Anchor Fastener at Dynamic Impacts]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Seismic Construction. Safety of Structures]. 2012, no. 1, pp. 43—45. (In Russian)
  5. Tsykanovskiy E.Yu. Problemy nadezhnosti, bezopasnosti i dolgovechnosti NFS pri stroitel’stve vysotnykh zdaniy [Problems of Rliability, Safety and Durability of Curtain Wall Systems during Construction of High-rise Buildings]. Tekhnologii stroitel’stva [Technologies of Construction]. 2006, no. 1, pp. 20—22. (In Russian)
  6. Emel’yanova V.A., Nemova D.V., Miftakhova D.R. Optimizirovannaya konstruktsiya navesnogo ventiliruemogo fasada [Optimized Structure of Hinged Ventilated Facade]. Inzhenerno-stroitel’nyy zhurnal [Engineering and Construction Journal]. 2014, no. 6 (50), pp. 53—66. (In Russian)
  7. Kocks U.F., Tomé C.N., Wenk H.-R. Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties. Cambridge, 2000, 688 p.
  8. Ash J.E., Hughes B.P. Anisotropy and Failure Criteria for Concrete. Matériaux et Construction. Nov.—Dec. 1970, vol. 3, no. 6, pp. 371—374. DOI: http://dx.doi.org/10.1007/BF02478760.
  9. Yong-Hak Lee A., Yeong-Seong Park, Young-Tae Joo B., Won-Jin Sung C., Byeong-Su Kang D. Anisotropic Loading Criterion for Depicting Loading Induced Anisotropy in Concrete. Fracture Mechanics of Concrete and Concrete Structures — Recent Advances in Fracture Mechanics of Concrete — B.H. Oh, et al. (eds) 2010, Korea Concrete Institute, Seoul. Available at: http://framcos.org/FraMCoS-7/04-01.pdf. Date of access: 11.11.2014.
  10. Ashcroft I.A. Fatigue Load Conditions. Handbook of Adhesion Technology. Springer, 2011, pp. 845—874.
  11. Reed-Hill R.E., Abbaschian R. Physical Metallurgy Principles. 3rd ed. Boston, PWS Publishing Company, 1994, pp. 230—233.
  12. Callister W.D.Jr. Materials Science and Engineering, an Introduction. 3rd ed. New York, John Wiley & Sons, Inc., 1994, 820 p.
  13. Baranova A.A., Savenkov A.I. Penoobrazovateli i prochnost’ penobetona [Foam Maker and Foam Concrete Durability]. Izvestiya Sochinskogo gosudarstvennogo universiteta [Izvestiya Sochi State University]. 2014, no. 3 (31), pp. 10—14. (In Russian)
  14. Gulyaev V.T., Ganik S.V. Vliyanie kachestva peska na svoystva penobetona [Influence of Sand Quality on Foam Concrete Properties]. Vologdinskie chteniya : materialy nauchnoy konferentsii. Vladivostok, dekabr’ 2011. Vyp. 80 [Vologdinsky Readings : Materials of the Scientific Conference. Vladivostok, December 2011, issue 80]. Vladivostok, Izdatel’skiy dom Dal’nevostochnogo federal’nogo universiteta Publ., 2012, pp. 35—36. (In Russian)
  15. Kobidze T.E., Korovyakov V.F., Kiselev A.Yu., Listov S.V. Vzaimosvyaz’ struktury peny, tekhnologii i svoystv poluchaemogo penobetona [Interrelation of Foam Structure, Technology and Properties of the Obtained Concrete]. Stroitel’nye materialy [Construction Materials]. 2005, no. 1, pp. 26—29. (In Russian)
  16. Rubtsov O.I., Rubtsov I.V. Veroyatnostno-statisticheskie metody monitoringa sooruzheniy [Probability-Statistical Methods of Structures Monitoring]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2006, no. 6, pp. 44—45. (In Russian)
  17. Stepnov M.N. Statisticheskaya obrabotka rezul’tatov mekhanicheskikh ispytaniy [Statistical Processing of Mechanical Tests’ Results]. Moscow, Mashinostroenie Publ., 1972, 232 p. (In Russian)
  18. Doerffel K. Statistik in der analytischen Chemie. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1982.
  19. Volkov A.A., Rubtsov I.V. Postroenie kompleksnykh sistem prognozirovaniya i monitoringa chrezvychaynykh situatsiy v zdaniyakh, sooruzheniyakh i ikh kompleksakh [Design of Integrated Systems Designated for the Forecasting and Monitoring of Emergencies in Buildings, Structures and Their Clusters]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 1, pp. 208—212. (In Russian)
  20. Rubtsov I.V., Kukhta A.V. Nekotorye zadachi monitoringa i perspektivy ikh resheniya na primere fasadnykh sistem [Some Tasks of Monitoring and Prospects of Their Solution on the Example of Facade Systems]. Krovel’nye i izolyatsionnye materialy [Roofing and Insulating Materials]. 2007, no. 7, pp. 44—45. (In Russian)
  21. Rubtsov I.V. Monitoring na stadii vozvedeniya sooruzheniya [Monitoring on the Construction Stage of a Structure]. Integral [Integral]. 2007, no. 5, pp. 86—87. (In Russian)
  22. Rubtsov I.V. Zadachi monitoringa na stadii ekspluatatsii sooruzheniya [Monitoring Tasks on the Operation Stage of a Building]. Integral [Integral]. 2007, no. 6, pp. 102—103. (In Russian)

Download

PECULIARITIES OF DESIGN OF CURTAIN WALL SYSTEMS TO ASSURE THERMAL INSULATION

Vestnik MGSU 3/2012
  • Golunov Sergej Anatolevich - Moscow State University of Civil Engineering (MSUCE) Deputy Director, Scientific and Research Institute of Construction Materials and Technologies 8 (495) 789-16-49, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoeshosse, Moscow, 129337, Russia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 51 - 56

Power efficiency of residential houses requires the application of varied thermal insulation systems, including curtain walls. Peculiarities of their design that can produce a substantial impact on their durability and operational reliability are discussed in the article.
A standard curtain wall system represents a structure composed of one layer of thermal insulation made of mineral cotton attached to the bearing wall by dish-shaped dowels, a bearing frame (a subsystem) attached to the wall by anchors, and outer lining materials (panels, boards or sheets) that are mounted in such a manner so that the spacing between the outer lining and the layer of thermal insulation is 0.4 to 0.8 m.
Evidently, strength analysis of structural and fixture elements (anchors) must be completed in the course of the building design (new project) or as a supplementary pre-repair stage in the event of extensive repairs, to assure reliable and safe operation of curtain wall systems. Any analysis is to be based on the most complete information about the materials and elements of the curtain wall system, its structural peculiarities, and the whole variety of loads and impacts that the building may be exposed to, including dynamic loads associated with its height. The quality of the analysis depends upon proper identification of the forces that the structure of the wall system is exposed to, and proper selection of design models of elements (namely, with the account for the kinematic analysis) of the structure of the curtain wall system being designed.
Evidently, many factors of strength of structural details, elements and joints must be substantiated by tests that may be specified as procedures of identification of structural reliability of a curtain wall system. Besides, the analysis-related section of the design project must be based on a set of tests (of separate elements and joints) performed in the environment close to the natural conditions of the curtain wall maintenance (field tests).
The results of laboratory tests (given the adjustments for permissible tolerances) may be regarded as the principal criteria in the assessment of applicability of a curtain wall system in the course of a major building repair project or a new construction to assure the required reliability and durability.

DOI: 10.22227/1997-0935.2012.3.51 - 56

References
  1. STO FCS – 44416204-010—2010. Krepleniya ankernye. Metod opredeleniya nesuschey sposobnosti po rezul’tatam naturnyh ispytaniy [Standard of Organization (FGU FCS– 44416204-010-2010). Anchors. Method of Testing for Determination of the Bearing Capacity as a Result of Field Tests], Moscow, 2010.
  2. MDS 20-1.2006. Vremennye rekomendacii ponaznacheniyu nagruzok i vozdeystviy, deystvujuschih na mnogofunkcional’nye vysotnye zdaniya i kompleksy v Moskve. [Local Moscow Construction Code.Temporary Recommendation for Fixing of Loads and Influences on Multifunctional High-Rise buildings in Moscow], Moscow, 2006.

Download

INVESTIGATION OF THE LOAD BEARING CAPACITY OF faCade EXPANSION ANCHOR WITHDRAWN FROM STEEL SOCKET

Vestnik MGSU 10/2015
  • Alisultanov Ramidin Semedovich - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student, Assistant Lecturer, Department of Engineering Geodesy, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Oleynikov Aleksandr Vladimirovich - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student, Assistant Lecturer, Department of Engineering Geodesy, Moscow State University of Civil Engineering (National Research University) (MGSU), .
  • Sryvkova Mariya Vladimirovna - Moscow State University of Civil Engineering (National Research University) (MGSU) head, Independent Project Department on Asset Complex Modernization of Planning And Design Office, Moscow State University of Civil Engineering (National Research University) (MGSU), .
  • Proshin Maksim Yur’evich - Moscow State University of Civil Engineering (National Research University) (MGSU) Master student, Institute of Hydrotechnical and Energy Construction, Moscow State University of Civil Engineering (National Research University) (MGSU), .

Pages 7-19

The authors investigated tear resistance of a faсade expansion anchor from a steel socket - a material possessing greater strength properties than nylon expansion anchor socket, which allows defining the properties of a socket, but not of a wall material. The authors obtained a load diagram consisting of four areas. Area 1 almost corresponds to Hook's law up to peak force. Area 2 is an abrupt decrease of tearing force. Area 3 is a smooth descending branch up to ultimate deformation corresponding to product certificate. Area 4 is a final withdrawal of an expansion anchor as a inclined line. The authors offered a hypothesis about genesis and destruction of microdefects on the contact area of nylon sleeve by dowels of metal bushing. Mathematical description of the offered hypothesis is given.

DOI: 10.22227/1997-0935.2015.10.7-19

References
  1. Tsykanovskiy E.Yu. Problemy nadezhnosti, bezopasnosti i dolgovechnosti NFS pri stroitel’stve vysotnykh zdaniy [Problems of Stability, Safety and Durability of Curtain Wall Systems at Construction of High-rise Buildings]. Tekhnologii stroitel’stva [Technologies of Construction]. 2006, no. 1, pp. 38—40. (In Russian)
  2. Granovskiy A.V., Kiselev D.A., Tsykanovskiy E.Yu. K voprosu ob otsenke nadezhnosti fasadnykh sistem i o raspredelenii vetrovykh nagruzok na nikh [To the Question of Estimating Reliability of Facade Systems and on Distribution of Wind Loads]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural Mechanics and Calculation of Structures]. 2006, no. 3, pp. 78—82. (In Russian)
  3. Volkov A.A., Shilova L.A. Obespechenie ustoychivosti ob”ektov zhizneobespecheniya v usloviyakh vozniknoveniya chrezvychaynoy situatsii [Sustainability of Life Support Systems in Emergency Situations]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 4, pp. 107—115. (In Russian)
  4. Tamrazyan A.G. K zadacham monitoringa riska zdaniy i sooruzheniy [To Risk Monitoring Problems of Buildings and Structures]. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka [Construction Materials, Equipment, Technologies of the 21st Century]. 2013, no. 3 (170), pp. 19—21. (In Russian)
  5. Simonyan V.V., Shendyapina S.V. Raschet tochnosti nablyudeniy za deformatsiyami vysotnykh zdaniy i sooruzheniy s ispol’zovaniem elektronnykh takheometrov [Calculating Observation Accuracy of the Deformation of Hogh-Rise Buildings and Structures Using Electronic Tacheometer]. Inzhenernye izyskaniya [Engineering Surveys]. 2014, no. 8, pp. 54—57. (In Russian)
  6. Ginzburg A.V., Nesterova E.I. Tekhnologiya nepreryvnoy informatsionnoy podderzhki zhiznennogo tsikla stroitel’nogo ob”ekta [Technology of Constant Informational Support of the Life Cycle of a Construction Object]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 5, pp. 317—320. (In Russian)
  7. Rubtsov I.V., Kukhta A.V. Nekotorye zadachi monitoringa i perspektivy ikh resheniya na primere fasadnykh sistem [Some Tasks of Monitoring and Prospects of Their Solution on the Example of Facade Systems]. Krovel’nye i izolyatsionnye materialy [Roofing and Insulating Materials]. 2007, no. 3, pp. 44—45. (In Russian)
  8. Volkov A.A., Rubtsov I.V. Postroenie kompleksnykh sistem prognozirovaniya i monitoringa chrezvychaynykh situatsiy v zdaniyakh, sooruzheniyakh i ikh kompleksakh [Design of Integrated Systems Designated for the Forecasting and Monitoring of Emergencies in Buildings, Structures and Their Clusters]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 1, pp. 208—212. (In Russian)
  9. Rubtsov I.V. Monitoring na stadii vozvedeniya sooruzheniya [Monitoring on the Construction Stage of a Structure]. Integral [Integral]. 2007, no. 5, pp. 86—87. (In Russian)
  10. Rubtsov I.V. Zadachi monitoringa na stadii ekspluatatsii sooruzheniya [Monitoring Tasks on the Operation Stage of a Building]. Integral [Integral]. 2007, no. 6, pp. 102—103. (In Russian)
  11. Çolak A. Parametric Study of Factors Affecting the Pull-Out Strength of Steel Rods Bonded into Precast Concrete Panels. International Journal of Adhesion and Adhesives. 2001, vol. 21, no. 6, pp. 487—493. DOI: http://dx.doi.org/10.1016/S0143-7496(01)00028-8.
  12. Guchkin I.S., Las'kov N.N., Sidorenko N.P., Shishkin S.O. Soprotivlenie vydergivaniyu ankera iz kirpichnoy kladki [Pull-Out Resistance of Anchor from Brick Masonry]. Regional’naya arkhitektura i stroitel’stvo [Regional Architecture and Construction]. 2014, no. 4, pp. 81—84. (In Russian)
  13. Granovskiy A.V., Kiselev D.A., Aksenova A.G. Ob otsenke nesushchey sposobnosti ankernykh krepleniy [On Estimation of Bearing Capacity of Anchor Clamping]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2006, no. 2, pp. 17—19. (In Russian)
  14. ASTM E 488-96. American Association for Testing and Materials. Standard Test Methods for Strength of Anchors in Concrete and Masonry Elements. ASTM, June 2003, pp. 1—8.
  15. Gesoğlu M., Özturan T., Özel M. and Güneyisi E. Tensile Behavior of Post-Installed Anchors in Plain and Steel Fiber-Reinforced Normal and High-Strength Concretes. ACI Structural Journal. March-April 2005, vol. 102, no. 2, pp. 224—231.
  16. Ivanov A.S., Bykova M.E. Printsipy krepleniya i rascheta ankerov navesnykh ventiliruemykh fasadnykh sistem [Principles of Clamping and Calculation of Anchors of Ventilated Façade Systems]. Izvestiya vuzov. Investitsii. Stroitel’stvo. Nedvizhimost’ [News of the Universities of Higher Education Investment. Construction. Real Estate]. 2014, no. 3 (8), pp. 32—39. (In Russian)
  17. Kornilov T.A., Ambros’ev V.V. Otsenka prochnosti krepleniya ankerov kronshteynov ventiliruemykh fasadnykh sistem [Reliability Estimation of Anchor Carrier Clamping of Ventilated Façade Systems]. Zhilishchnoe stroitel’stvo [Housing Construction]. 2010, no. 11, pp. 35—37. (In Russian)
  18. Ehrenstein G.W. Aus Reihenuntersuchungen mit Bauwerksdübeln aus Polyamid. Verbindungstechnik. 1976, no. 12, pp. 13—14. (in German)
  19. Eligehausen R., Malle R., Silva J. Anchorage in Concrete Construction. Berlin, Ernst&Sohn, 2006, 391 p.
  20. Granovskiy A.V., Kiselev D.A. Eksperimental’nye issledovaniya raboty ankernogo krepezha pri dinamicheskikh vozdeystviyakh [Experimental Research of Anchor Fastener at Dynamic Impacts]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Seismic Construction. Safety of Structures]. 2012, no. 1, pp. 43—45. (In Russian)
  21. Granovskiy A.V., Kiselev D.A. Issledovaniya raboty ankerov pri seysmicheskikh udarnykh vozdeystviyakh [Investigation of Anchors Operation at Seismic Impact Actions]. Tekhnologii stroitel’stva [Construction Technologies]. 2009, no. 6, pp. 44—46. (In Russian)
  22. Granovskiy A.V., Kiselev D.A. Eksperimental’nye issledovaniya ankernogo krepezha firmy MUNGO pri seysmicheskikh vozdeystviyakh [Experimental Investigations of Anchor Clamping by MUNGO at Seismic Impacts]. StroyMetall [Construction Metal]. 2009, no. 5 (13), pp. 52—56. (In Russian)
  23. Rainieri C., Fabbrocino G. and Cosenza E. Structural Health Monitoring Systems as a Tool for Seismic Protection. World Conference on Earthquake Engineering, October 12—17. 2008, Beijing, China.
  24. Granovskiy A.V., Dottuev A.I., Krasnoshchekov G.Yu. Seysmostoykost’ ankernogo krepezha dlya krepleniya sendvich-paneley k metallicheskomu karkasu [Seismic Resistance of Anchor Clamping for Fixing Sandwich Panels to Metal Frame]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2012, no. 3, pp. 46—48. (In Russian)
  25. Eligehausen R., Hoehler M. Testing of Post-Installed Fastenings to Concrete Structures in Seismic Regions. Conference Proceedings of the fib Symposium on Concrete Struc-tures in Seismic Regions, Athens, Greece, 2003.

Download

VORTEX DISCHARGE - CIRCLE SITUATED ON INFINITE IMPENETRABLE CYLINDER

Vestnik MGSU 10/2015
  • Mikhaylov Ivan Evgrafovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Hydraulics and Water Resources, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Alisultanov Ramidin Semedovich - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student, Assistant Lecturer, Department of Engineering Geodesy, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 153-161

The authors investigated potential flow in a cylindrical coordinate frame, which is induced by two features situated in infinite space filled with ideal (nonviscous) fluid. The discharge is a circle situated on infinite impenetrable cylinder and an infinite vortex line coincident with the cylinder axis. The discharge - circle creates meridional potential liquid flow, and the vortex line creates potential rotation of fluid around the cylinder. The total motion of fluid is special. The function of velocities potential is presented as a sum of two functions, one of which defines meridional flow, and the second - liquid rotation, the analytic expression of which is known. There is no analytic dependence for the potential function of the velocities of the observed discharge - circle and we yet fail to get it. That’s why the authors used a new approach to investigation of potential flows, which have no analytic expression of potential function, developed by I.E. Mikhaylov. It is based on kinematic similitude of two flows, for one of which the potential function is known. This function is basic and the analytical dependence of the unknown function of velocity potentials is presented as a product of basic function and theoretically justified coefficient -velocity corrective, which correlates with the velocity of unknown motion. The authors obtained analytic dependencies for velocity correctives, velocity components, stream surfaces and their meridian sections, fluid lines projections of the total flow on the horizontal plane, which are spiral-shaped. The investigation has finished appearance and is ready for engineering solution. It is stated, that the flow formed by vortex discharge - circle well corresponds to liquid motion in spiral turbine cases and may be used for their calculation.

DOI: 10.22227/1997-0935.2015.10.153-161

References
  1. Vaynshteyn I.I., Fedotova I.M. Zadacha Gol’dshtika o skleyke vikhrevykh techeniy ideal’noy zhidkosti v osesimmetricheskom sluchae [Goldshtick Problem on Adhesion of Vortex Flows of an Ideal Fluid in Axisymmetric Case]. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva [Vestnik SibSAU. Aerospace Technologies and Control Systems]. 2014, no. 3 (55), pp. 48—54. (In Russian)
  2. Chanson H. Applied Hydrodynamics: an Introduction to Ideal and Real Fluid Flows. CRC Press, Taylor & Francis Group, 2009, 478 p.
  3. Chanson H. Current Knowledge in Hydraulic Jumps and Related Phenomena. A Survey of Experimental Results. European Journal of Mechanics B/Fluids. 2009, vol. 28, no. 2, pp. 191—210. DOI: http://dx.doi.org/10.1016/j.euromechflu.2008.06.004.
  4. Pozin G.M. Raschet vliyaniya ogranichivayushchikh ploskostey na spektry vsasyvaniya [Calculation of Restricting Planes’ Influence on Absorbing Spectra]. Nauchnye raboty institutov okhrany truda [Scientific Works of Work Safety Institutes]. Moscow, Profizdat Publ., 1977, no. 105, pp. 8—13. (In Russian)
  5. Posokhin V.N. Primenenie metoda izobrazheniy dlya rascheta skorostey podtekaniya k vsasyvayushchim shchelevidnym otverstiyam [Application of Image Method for Calculating Inflow Velocities to Intake Slotted Outlets]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 1988, no. 2, pp. 100—102. (In Russian)
  6. Anderson J.D. Modern Compressible Flow. McGraw-Hill, 2002, pp. 358—359.
  7. Eckert M. The Dawn of Fluid Dynamics: A Discipline between Science and Technology. Wiley-VCH, 2006, 296 p.
  8. Faulkner L.L. Practical Fluid Mechanics for Engineering Applications. Basil, Switzerland, Marcel Dekker AG, 2000, 408 p.
  9. Logachev K.I., Puzanok A.I., Posokhin V.N. Raschet vikhrevogo techeniya u shchelevidnogo bokovogo otsosa [Calculation of Vortex Flow near Slotted Side Outlet]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 2004, no. 6, pp. 64—69. (In Russian)
  10. Khatsuria R.M. Hydraulics of Spillways and Energy Dissipaters. New York, Marcel Dekker, 2005, 673 p.
  11. Safiullin R.G., Posokhin V.N. Vikhrevye zony vblizi stokov pri nalichii ogranichivayushchikh poverkhnostey [Vortex Zones near Runoffs in Presence of Limiting Surfaces]. Vestnik Kazanskogo tekhnologicheskogo universiteta [Herald of Kazan Technological University]. 2011, no. 20, pp. 142—145. (In Russian)
  12. Kraeva E.M., Masich I.S. Vikhrevye struktury turbulentnykh potokov i ikh modelirovanie [Vortex Structures of Turbulent Flows and Their Modeling]. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva [Proceedings of the Siberian State Aerospace University Named after Academician M.F. Reshetnev]. 2011, no. 1 (34), pp. 107—111. (In Russian)
  13. Mohseni K., Ran H., Colonius T. Numerical Experiments on Vortex Ring Formation. J. Fluid Mech. 2001, vol. 430, pp. 267—282.
  14. Shariff K., Leonard A. Vortex Rings. Annual Review of Fluid Mechanics. 1992, vol. 24, pp. 235—279. DOI: http://dx.doi.org/10.1146/annurev.fl.24.010192.001315.
  15. Swearingen J., Crouch J., Handler R. Dynamics and Stability of a Vortex Ring Impacting a Solid Boundary. Journal of Fluid Mechanics. 1995, vol. 297, pp. 1—28. DOI: http://dx.doi.org/10.1017/S0022112095002977.
  16. Zhao W., Frankel S., Mongeau L. Effects of Trailing Jet Instability on Vortex Ring Formation. Phys. Fluids. 2000, no. 12, pp. 589—596. DOI: http://dx.doi.org/10.1063/1.870264.
  17. Mikhaylov I.E., Alisultanov R.S. Stok — okruzhnost’, raspolozhennyy na poverkhnosti ili vnutri beskonechnogo nepronitsaemogo tsilindra [Discharge — Circle Situated on the Surface or Inside an Infinite Impermeable Cylinder]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2015, no. 8, pp. 140—149. (In Russian)
  18. Mikhaylov I.E. Novyy podkhod k issledovaniyu potentsial’nykh techeniy, kotorye ne imeyut analiticheskogo vyrazheniya funktsii potentsiala skorosti [New Approach to the Investigation of Potential Flows, Which Don’t Have Analytic Expression of Velocity Potential Function]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 2015, no. 2, pp. 32—44. (In Russian)
  19. Mikhaylov I.E. Prostranstvennyy lineynyy stok konechnoy dliny s ravnomernym raspredeleniem intensivnosti po dline [Space Linear Discharge of a Finite Length with Homogeneous Longitudinal Intensity Distribution]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 2014, no. 4, pp. 20—26. (In Russian)
  20. Mikhailov I.E. Three-Dimensional Linear Flow of Finite Length with Uniform Intensity Distribution along Length. Power Technology and Engineering (Springer). 2014, vol. 48, no. 3, pp. 205—209. DOI: http://dx.doi.org/10.1007/s10749-014-0509-7.

Download

Results 1 - 4 of 4