RESEARCH OF BUILDING MATERIALS

DECORATIVE SANDWICH CONCRETES WITH A PROTECTIVE POLYMER LAYER ENSURING IMPROVED FRACTURE STRENGTH

Vestnik MGSU 3/2012
  • Moiseenko Ksenija Sergeevna - Moscow State University of Civil Engineering(MSUCE) Candidate of Technical Sciences, Senior Lecturer, Department of Technology of Binders and Concretes, Moscow State University of Civil Engineering(MSUCE), 26 Yaroslavskoeshosse, Moscow, 129337, Russia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Voronin Viktor Valerianovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Technologies of Cohesive Materials and Concretes, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, 129337, Russian Federation.
  • Panchenko Aleksandr Ivanovich - Moscow State University of Civil Engineering (MSUCE) 8 (499) 287-49-14, ext. 3101, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoeshosse, Moscow, 129337, Russia.
  • Solovev Vitalij Nikolaevich - Moscow State University of Civil Engineering (MSUCE) Doctor of Technical Sciences, Professor, Department of Construction of Nuclear Plants 8(499) 188-03-03, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoeshosse, Moscow, 129337, Russia.

Pages 96 - 99

This paper covers the integrity of decorative sandwich materials; relations between relative deformations of the sandwich system and the length of contact between layers; thicknesses of the surface layer and relative deformations of the concrete base. Principles of the proposed technology are also provided in the article.
The field study of the behaviour of decorative sandwich concrete products exposed to severe conditions of operation have proven that products collapse due to cracking and peeling of the polymer concrete layer in particular cases.
Deformations of sandwich materials caused by temperature and humidity fluctuations were analyzed by strain-gauge resistance sensors placed onto the surface polymer concrete layer of a product fragment and on the concrete base in the course of their freezing. Deformations were measured at the temperature intervals of 4 to 5 degrees Celsius. Freezing represents the most severe condition.
Mathematical method of experimental planning was employed to identify the dependence between relative deformations of sandwich system Исс and length of layer-to-layer contact L, thickness of surface layer h and relative deformations of the concrete base ɛ 105.
As a result of the probabilistic and statistical processing of the experimental data a three-factor quadratic model of relative deformations of a sandwich system was generated.
This equation is used to identify the most favourable conditions to assure the integrity of a sandwich product under the combined impact of the aforementioned factors. The analysis has proven that the surface layer made of polymer concrete does not crack irrespective of the contact length if deformations of the concrete base do not exceed the limit tensibility of the surface layer. In the event of substantial deformations of the concrete base, integrity of the sandwich system is to be assured by means of the right choice of thickness and length of the surface layer.
Based on the dependence of relative deformations of the sandwich composite, made of a concrete matrix and a polymer concrete decorative and protective layer, analysis of their integrity was performed with the account for the thickness of the surface layer, contact length and relative deformations of the water saturated concrete base in the course of freezing.
Pre-set theoretical provisions were applied to develop recommendations aimed at the optimization of the composition and characteristics of the technology of production of double-layer decorative and protective products based on polymer and mineral binders.

DOI: 10.22227/1997-0935.2012.3.96 - 99

References
  1. Piskarev B.A. Dekorativno-otdelochnye stroitel’nye materialy [Decorative Finishing Building Materials]. Moscow, Vysshaja shkola, 1977.
  2. Bazhenov Ju.M. Tehnologiya betona [Technology of Concrete], Moscow, ASV, 2007.
  3. Voronin V.V. Morozostoykost’ i tehnologiya betona s modificirovannym poverhnostnym sloem [Frost Resistance and Technology of Concrete with a Modified Surface Layer]. Author’s abstract of a doctoral dissertation, Moscow, MISI im. V.V. Kuybysheva, 1985.
  4. Moiseenko K.S. Povyshenie treschinostoykosti sloistykh betonnykh izdeliy s dekorativnym polimerbetonnym zaschitnym sloem [Improvement of Fracture Resistance of Sandwich Concrete Products with a Decorative Polymer Concrete Protective Layer]. Author’s abstract of a candidate’s dissertation, Moscow, MGSU, 2011.

Download

INFLUENCE OF QUARTZ FLOUR ON TECHNOLOGICAL PROPERTIES OF SELF-COMPLETED CONCRETE MIXTURES

Vestnik MGSU 6/2018 Volume 13
  • Pustovgar Andrey Petrovich - Moscow State University of Civil Engineering (National Research University) (MGSU) candidate of technical sciences, assistant professor, Vice Rector for Research, scientific director of the Research Institute of Building Materials and Technologies (SRI SMiT), Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Ivanova Irina Sergeevna - Moscow State University of Civil Engineering (National Research University) (MGSU) research worker Research Institute of Building Materials and Technologies (SRI SMiT), Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Elenova Aurika Almazovna - Moscow State University of Civil Engineering (National Research University) (MGSU) candidate of technical sciences, head Research Laboratory of Building Composites, Solutions and Concretes, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Abramova Anastasiya Yurʹevna - Moscow State University of Civil Engineering (National Research University) (MGSU) junior research worker of Research Institute of Building Materials and Technologies (SRI SMiT), Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Adamtsevich Aleksey Olegovich - Moscow State University of Civil Engineering (National Research University) (MGSU) candidate of technical sciences, senior research worker of Head of the Department of Scientific Policy, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 717-728

Subject: technological properties of self-compensating concrete mixtures with a fine-grained microfiller, represented by quartz flour. Objectives: to determine the quantitative parameters of the influence of the granulometric composition of quartz flour and its dosages on the workability and delamination of self-compacting concrete mixtures with a constant consumption of gauged water and various contents of the superplasticizing additive. Materials and methods: portland cement CЕМ II/A-S 42,5N was used in the work; natural pit sand of 0…5 mm fraction; crushed stone of fraction 5...20 mm; Silverbond quartz flour with an average particle size of 17 μm and 34 μm (grades 15 and 30, respectively); Superplasticizer based on polycarboxylate ester GLENIUM®115. The grain size composition of microfillers was investigated by laser diffractometry using the laser particle analyzer "Analysette 22" COMPACT in accordance with ISO 13320-1: 2009. The mobility of the cone flow diameter and the delamination of the concrete mixture were measured in accordance with GOST 10181. Results: it was researched the influence of quartz flour of various granulometric composition (with an average particle size of 17 μm and 34 μm), applied in dosages of 50, 100 and 150 kg/m3, on the technological properties of self-compacting concrete mixtures with different superplasticizer content (2, 4, 6 and 8 l/m3) and a constant flow of gauged water, as a result of which it has been established that the use of quartz flour of finer grinding provides higher values of SCC mobility under the condition of equal content of superplasticer and gauged water; when using a more coarse quartz flour, the growth of the dosage of the superplasticizer causes a more pronounced increase in the mobility of the concrete mixture; increasing the dosage of quartz flour allows to reduce the delamination of SCC. Conclusions: experimental studies have shown the effectiveness of the use of quartz flour for obtaining SCCs of various classes of workability (SF1 ... SF3) and resistance to delamination (SR1, SR2) and have established that the use of quartz flour D50 = 34 μm leads to insufficient optimization of the granulometric of the composition of the SCC and, as a consequence, stratification of the mixture with its low mobility, whereas the thinner fraction D50 = 17 μm, of the same type of microfiller, makes it possible to obtain resistant to the delamination of any SCC in for the workability due to varying dosages of both the microfiller and superplasticizer.

DOI: 10.22227/1997-0935.2018.6.717-728

Download

Results 1 - 2 of 2