DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

The features of behaviour of a thin-walled cold-formed C-purlin

Vestnik MGSU 10/2014
  • Tusnina Ol’ga Aleksandrovna - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Metal Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 64-74

Nowadays thin-walled cold-formed profiles are widely used as bearing structures of buildings. The features of these profiles are little thickness and complicated cross-section shape. These features influence the behaviour of the structures made of cold-formed profiles. It is an often situation that we can not apply load directly on the element in the shear center due to its complicated shape and boundary conditions, such as support fixation. Thus, the purlin experiences a combined action of bending and restraint torsion. Besides, the distortion of purlin occurs and in this case the Vlasov’s theory of thin-walled elastic beams is not applicable. In this paper the analysis of cold-formed C-purlin is considered. The results of physically and geometrically nonlinear analysis are represented. The components of the stress state of purlin are determined. An estimation of the influence of cross-section distortion on the angles of rotation about longitudinal axis of purlin is done. The buckling analysis according to Russian standards SNiP was done.

DOI: 10.22227/1997-0935.2014.10.64-74

References
  1. Mezentseva E.A., Lushnikov S.D. Bystrovozvodimye zdaniya iz legkikh stalnykh konstruktsiy [Prefabricated Buildings of Light Steel Structures]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2009, Special issue, no. 1, pp. 62—64. (in Russian)
  2. Vatin N.I., Sinel’nikov A.S. Bolsheproletnye nadzemnye peshekhodnye perekhody iz legkogo kholodnognutogo stal’nogo profilya [Long Span Footway Bridges: Cold-Formed Steel Cross-Section]. Stroitel’stvo unikal’nykh zdaniy i sooruzheniy [Construction of Unique Buildings and Structures]. 2012, no. 1, pp. 47—53. (in Russian)
  3. Ayrumyan E.L. Osobennosti rascheta stal’nykh konstruktsiy iz tonkostennykh gnutykh profiley [The Features of the Analysis of Thin-Walled Cold-Formed Steel Structures]. Montazhnye i spetsial’nye raboty v stroitel’ste [Erecting and Special Works in Construction]. 2008, no. 3, pp. 2—7. (in Russian)
  4. Ayrumyan E.L., Belyy G.I. Issledovanie raboty stal’noy fermy iz kholodnognutykh profiley s uchetom ikh mestnoy i obshchey ustoychivosti [A Study of Steel Cold-Formed Profiles of Trusses with Regard to Their Local and General Stability]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2010, no. 5, pp. 41—44. (in Russian)
  5. Yu C., Schafer B.W. Distortional Buckling Tests on Cold-Formed Steel Beams. Journal of Structural Engineering. 2006, vol. 132, no. 4, pp. 515—528.
  6. Tusnin A.R., Tusnina O.A. Vychislitel’naya sistema «STAL’KON» dlya rascheta i proektirovaniya sterzhnevykh konstruktsiy iz tonkostennykh sterzhney otkrytogo profilya [Computing System "STALKON" for Analysis and Design of Lattice Structures of Thin-walled Rods of Open Profile]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2012, no. 8, pp. 62—65. (in Russian)
  7. Vatin N.I., Rybakov V.A. Raschet metallokonstruktsiy — sed’maya stepen’ svobody [An Analysis of Metal Structures — the Seventh Degree of Freedom]. StroyPROFIl" [Construction Profile]. 2007, no. 2 (56), pp. 60—63. (in Russian)
  8. Heinisuo M., Liukkonen V.-P., Tuomala M. New Beam Element Including Distortion. Nordic Steel Construction Conference 95, Malmö, Sweden, June 19—21. Swedish Institute of Steel Construction, 1995, Publication 150, vol. I, pp. 65—72.
  9. Gordeeva A.O., Vatin N.I. Raschetnaya konechno-elementnaya model’ kholodnognutogo perforirovannogo tonkostennogo sterzhnya v programmno-vychislitel’nom kom-plekse SCAD Office [Finite Element Calculation Model of Thin-Walled Cold-Formed Profile in Software Package SCAD Office]. Inzhenerno-stroitel’nyy zhurnal [Engineering and Construction Journal]. 2011, no. 3 (21), pp. 36—46. (in Russian)
  10. Lalin V.V., Rybakov V.A., Morozov S.A. Issledovanie konechnykh elementov dlya rascheta tonkostennykh sterzhnevykh sistem [The Finite Element Research for Calculation of Thin-Walled Bar Systems]. Inzhenerno-stroitel’nyy zhurnal [Engineering and Construction Journal]. 2012, no. 1 (27), pp. 53—73. (in Russian)
  11. Lalin V.V., Rybakov V.A. Konechnye elementy dlya rascheta ograzhdayushchikh konstruktsiy iz tonkostennykh profiley [Creating the Finite Elements of Thin-Walled Beams for Design of Light Steel Constructions]. Inzhenerno-stroitel’nyy zhurnal [Engineering and Construction Journal]. 2011, no. 8 (26), pp. 69—80. (in Russian)
  12. Selyantsev I., Tusnin A. The Influence of Cross-Section Shape Changing on Work of Thin-Walled Cold-Formed Steel Beam. Proceedings of the METNET Seminar 2011 in Aarhus. HAMK University of Applied Science, Einland, 2011, pp. 143—148.
  13. Yu C., Schafer B.W. Distortional Buckling of Cold-Formed Steel Members in Bending. Final report. AISI. Baltimore, January 2005, 386 p.
  14. Chu X.T., Ye Z.M., Li L.Y., Kettle R. Local and Distortional Buckling of Cold-Formed Zed-Sections Beams under Uniformly Distributed Transverse Loads. International Journal of Mechanical Sciences. 2006, vol. 48, pp. 378—388. DOI: http://dx.doi.org/10.1016/j.ijmecsci.2005.11.005.
  15. Chu X.T., Ye Z.M., Li L.Y., Kettle R. Buckling Behaviour of Cold-Formed Channel Sections under Uniformly Distributed Loads. Thin-Walled Structures. 2005, vol. 43, no. 4, pp. 531—542.
  16. Pavazza R., Blagojevic B. On the Cross-Section Distortion of Thin-Walled Beams with Multi-Cell Cross-Sections Subjected to Bending. International Journal of Solids and Structures. 2005, vol. 42, no. 3—4, pp. 901—925. DOI: http://dx.doi.org/10.1016/j.ijsolstr.2004.06.036.
  17. Silvestre N., Camotim D. Distortional Buckling Formulae for Cold-Formed Steel C- and Z-Section Members: Part I — Derivation. Thin-Walled Structures. 2004, vol. 42, no. 11, pp. 1567—1597.
  18. Silvestre N., Camotim D. Distortional Buckling Formulae for Cold-Formed Steel C- and Z-Section Members: Part II — Validation and Application. Thin-walled Structures. 2004, vol. 42, no. 11, pp. 1599—1629.
  19. Silvestre N., Camotim D. On the Mechanics of Distortion in Thin-Walled Open Sections. Thin-walled Structures. 2010, vol. 48, no. 7, pp. 469—481. DOI: http://dx.doi.org/10.1016/j.tws.2010.02.001.
  20. Vieira L.C.M., Malite M., Schafer B.W. Simplified Models for Cross-Section Stress Demands on C-Section Purlins in Uplift. Thin-walled Structures. 2010, vol. 48, no. 1, pp. 33—41. DOI: http://dx.doi.org/10.1016/j.tws.2009.07.009.
  21. Wang X.P., Lam S.S.E., Chung K.F. Cross-section Distortion due to Cutting of Cold-Formed Steel Lipped C-Section. Thin-walled Structures. 2006, vol. 44, no. 3, pp. 271—280. DOI: http://dx.doi.org/10.1016/j.tws.2006.03.007
  22. Vlasov V.Z. Tonkostennye uprugie sterzhni [Thin-walled Elastic Beams]. Moscow, Fizmatgiz Publ., 1959, 574 p. (in Russian)

Download

DECORATIVE SANDWICH CONCRETES WITH A PROTECTIVE POLYMER LAYER ENSURING IMPROVED FRACTURE STRENGTH

Vestnik MGSU 3/2012
  • Moiseenko Ksenija Sergeevna - Moscow State University of Civil Engineering(MSUCE) Candidate of Technical Sciences, Senior Lecturer, Department of Technology of Binders and Concretes, Moscow State University of Civil Engineering(MSUCE), 26 Yaroslavskoeshosse, Moscow, 129337, Russia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Voronin Viktor Valerianovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Technologies of Cohesive Materials and Concretes, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, 129337, Russian Federation.
  • Panchenko Aleksandr Ivanovich - Moscow State University of Civil Engineering (MSUCE) 8 (499) 287-49-14, ext. 3101, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoeshosse, Moscow, 129337, Russia.
  • Solovev Vitalij Nikolaevich - Moscow State University of Civil Engineering (MSUCE) Doctor of Technical Sciences, Professor, Department of Construction of Nuclear Plants 8(499) 188-03-03, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoeshosse, Moscow, 129337, Russia.

Pages 96 - 99

This paper covers the integrity of decorative sandwich materials; relations between relative deformations of the sandwich system and the length of contact between layers; thicknesses of the surface layer and relative deformations of the concrete base. Principles of the proposed technology are also provided in the article.
The field study of the behaviour of decorative sandwich concrete products exposed to severe conditions of operation have proven that products collapse due to cracking and peeling of the polymer concrete layer in particular cases.
Deformations of sandwich materials caused by temperature and humidity fluctuations were analyzed by strain-gauge resistance sensors placed onto the surface polymer concrete layer of a product fragment and on the concrete base in the course of their freezing. Deformations were measured at the temperature intervals of 4 to 5 degrees Celsius. Freezing represents the most severe condition.
Mathematical method of experimental planning was employed to identify the dependence between relative deformations of sandwich system Исс and length of layer-to-layer contact L, thickness of surface layer h and relative deformations of the concrete base ɛ 105.
As a result of the probabilistic and statistical processing of the experimental data a three-factor quadratic model of relative deformations of a sandwich system was generated.
This equation is used to identify the most favourable conditions to assure the integrity of a sandwich product under the combined impact of the aforementioned factors. The analysis has proven that the surface layer made of polymer concrete does not crack irrespective of the contact length if deformations of the concrete base do not exceed the limit tensibility of the surface layer. In the event of substantial deformations of the concrete base, integrity of the sandwich system is to be assured by means of the right choice of thickness and length of the surface layer.
Based on the dependence of relative deformations of the sandwich composite, made of a concrete matrix and a polymer concrete decorative and protective layer, analysis of their integrity was performed with the account for the thickness of the surface layer, contact length and relative deformations of the water saturated concrete base in the course of freezing.
Pre-set theoretical provisions were applied to develop recommendations aimed at the optimization of the composition and characteristics of the technology of production of double-layer decorative and protective products based on polymer and mineral binders.

DOI: 10.22227/1997-0935.2012.3.96 - 99

References
  1. Piskarev B.A. Dekorativno-otdelochnye stroitel’nye materialy [Decorative Finishing Building Materials]. Moscow, Vysshaja shkola, 1977.
  2. Bazhenov Ju.M. Tehnologiya betona [Technology of Concrete], Moscow, ASV, 2007.
  3. Voronin V.V. Morozostoykost’ i tehnologiya betona s modificirovannym poverhnostnym sloem [Frost Resistance and Technology of Concrete with a Modified Surface Layer]. Author’s abstract of a doctoral dissertation, Moscow, MISI im. V.V. Kuybysheva, 1985.
  4. Moiseenko K.S. Povyshenie treschinostoykosti sloistykh betonnykh izdeliy s dekorativnym polimerbetonnym zaschitnym sloem [Improvement of Fracture Resistance of Sandwich Concrete Products with a Decorative Polymer Concrete Protective Layer]. Author’s abstract of a candidate’s dissertation, Moscow, MGSU, 2011.

Download

INFLUENCE OF POLYMERIC-DISPERSED REINFORCEMENT ADDITIVES ON THE PERFORMANCE CHARACTERISTICS OF ASPHALT CONCRETE

Vestnik MGSU 6/2017 Volume 12
  • Chernov Sergey Anatolevych - Academy of Construction and Architecture, State Don Technical University (DSTU ASA) Candidate of Technical Sciences, Associate Professor of the Auto Roads Department, Academy of Construction and Architecture, State Don Technical University (DSTU ASA), 162 Socialisticheskaya str., Rostov-na-Donu, 344022, Russian Federation.
  • Kaklyugin Alexander Viktorovich - Academy of Construction and Architecture, State Don Technical University (DSTU ASA) Candidate of Technical Sciences, Associate Professor of the Constructional Materials Department, Academy of Construction and Architecture, State Don Technical University (DSTU ASA), 162 Socialisticheskaya str., Rostov-na-Donu, 344022, Russian Federation.
  • Nikitina Anna Nykolaevna - Academy of Construction and Architecture, State Don Technical University (DSTU ASA) Candidate of Economical Sciences, Associate Professor of the Transport and Traffic Management Department, Academy of Construction and Architecture, State Don Technical University (DSTU ASA), 162 Socialisticheskaya str., Rostov-na-Donu, 344022, Russian Federation.
  • Golyubyn Kirill Dmitrievich - Academy of Construction and Architecture, State Don Technical University (DSTU ASA) post-graduate, Auto Roads Department, Academy of Construction and Architecture, State Don Technical University (DSTU ASA), 162 Socialisticheskaya str., Rostov-na-Donu, 344022, Russian Federation.

Pages 654-660

The technique and results of the studies of the influence of a polymeric-dispersed reinforcement additive on the performance characteristics of road hot asphalt concrete, namely, its resistance to fatigue failures, rutting and development of residual deformation are described. It is shown that the proposed method of modification of asphalt-concrete mixtures ensures an increase in the durability of layers of pavement road surface.

DOI: 10.22227/1997-0935.2017.6.654-660

Download

Results 1 - 3 of 3