SAFETY OF BUILDING SYSTEMS. ECOLOGICAL PROBLEMS OF CONSTRUCTION PROJECTS. GEOECOLOGY

TECHNICAL AND HYGIENIC ASPECTS OF POTABLE WATER FLUORINATION

Vestnik MGSU 3/2012
  • Alekseev Leonid Sergeevich - Moscow State Academy of Municipal Engineering and Construction (MSAMEC) Doctor of Technical Sciences, Professor, Department of Public and Industrial Water Consumption, Moscow State Academy of Municipal Engineering and Construction (MSAMEC), 30 Sr. Kalitnikovskaja St., Moscow, 109807, Russia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Ivleva Galina Alekseevna - OAO NII VODGEO Candidate of Technical Sciences, Senior Researcher, Director of Laboratory of Water Industry of the Institute of Water Supply, Sewage, Hydraulic Works and Groundwater Hydrology, OAO NII VODGEO, Building 2, 42 Komsomolskij prospect, Moscow, 119048; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Zaed Sadik Abrahem Al-Amri - Voronezh State University of Architecture and Civil Engineering postgraduate student, Department of Hydraulics, Water Supply and Water Discharge, Voronezh State University of Architecture and Civil Engineering, 84 20-letija Oktjabrja St., Voronezh, 394006; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 154 - 158

Water and milk-free products are the principal sources of fluorine; they account for the 80% of the total amount of fluorine consumed by adults, depending on the fluorine content in the potable water. The bigger the fluorine content in the water, the higher the number of fluorosis cases, while number of caries cases is reduced. Fluorine contributes to formation of the bone tissue, enamelogenesis and tooth dentine. Fluorine also has a strong cavity protection effect.
The optimal fluorine content varies between 1….1.5 mg/dm3. Its concentration range is determined by maximal day-time air temperatures, as the amount of potable water consumed during the day is dependent on temperature variations.
Desalination of sea water aimed at its conversion into potable water means removal of fluorine; therefore, any water desalinated by way of distillation and reverse osmos needs fluorination.
In the domestic practice, dosing of solutions of the fluorine-containing agent is applied. The recommendation is to use solutions of sodium fluoride with the fluorine content of 45.3 % and silicofluoric sodium or ammonium with the fluorine content of 64 %. In the USA, dry dosing of fluorine-containing agents is applied, as the fine-grained powder of agent А1FSО4·Н2О is added to the water subjected to treatment. The agent is neither corrosive, nor toxic.
Besides, fluorination prevents development of osteoporosis.
Approximately 355 million of people worldwide consume artificially fluorinated water. Other 50 million consume water that contains natural fluorine, the concentration of which is equal to 1 mg/dm3.

DOI: 10.22227/1997-0935.2012.3.154 - 158

References
  1. Alekseev L.S. Kontrol’ kachestva vody [Water Quality Control]. Moscow, Infra-M, 2010.
  2. Somov M.A., Zhurba M.G. Vodosnabzhenie [Water Supply]. Vol. 1, Ìoscow, ASV, 2010.

Download

MODERNIZATION OF WATER SUPPLY SYSTEM BASING ON OPTIMIZATION OF HYDRAULIC PARAMETERS IN CASE OF ACCIDENTS ON MAIN LINES

Vestnik MGSU 10/2015
  • Shcherbakov Vladimir Ivanovich - Voronezh State University of Architecture and Civil Engineering (VGASU) Doctor of Technical Sciences, Professor, Department of Hydraulics, Water Supply and Water Disposal, Voronezh State University of Architecture and Civil Engineering (VGASU), 84 20-letiya Oktyabrya str., Voronezh, 394006, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Nguyen Huy Cuong - Voronezh State University of Architecture and Civil Engineering (VGASU) postgraduate student, Department of Hydraulics, Water Supply and Water Disposal, Voronezh State University of Architecture and Civil Engineering (VGASU), 84 20-letiya Oktyabrya str., Voronezh, 394006, Russian Federation.

Pages 115-126

In the large cities of Vietnam there is a serious problem of providing the drinking water of good quality to population and industry in the required quantity and with sufficient pressure. Chaotic building in certain areas has resulted in the formation of quite complex water systems, consisting of large main pipelines and a plurality of dead ends. Because of insufficient water pressure in the water network, the majority of consumers have to install individual reservoirs and tanks on the roofs of the buildings. The uneven water withdrawal from the network and its irrational use violates the hydraulic regime of water supply and distribution. The authors offer a water supply scheme with the accompanying transit flow lines with pipes of smaller diameter which allow providing the required amount of water and increasing the pressure on the ring. Hydraulic calculations of ring network were made using the software program WaterGEMS V8i for the worst case of the system of water supply. The plots of the water supply network show an increase in diameter of pipes is required, which greatly reduces pressure losses and ensures a reliable supply of water to the consumer. In order to solve the problem of optimal power flow, a scheme of water supply with associated main pipelines with smaller diameter was created. Laying of main pipelines accompanied by parallel lines connected to them provide better hydraulic conditions, reduce the pressure loss in the piping and shortens power consumption.

DOI: 10.22227/1997-0935.2015.10.115-126

References
  1. Những quả 'bom' tấn chênh vênh trên nóc tập thể xập xệ // zing.vn. Available at: http://news.zing.vn/Nhung-qua-bom-tan-chenh-venh-tren-noc-tap-the-xap-xe-post461545.html. Date of access: 13.09.2015.
  2. Shcherbakov V.I. Gorodskoy vodoprovod [City Water Supply System]. Voronezh, VGASU Publ., 2000, 240 p. (In Russian)
  3. Eletskikh V.L., Shcherbakov V.I. Voda i lyudi : Istoriya i den’ segodnyashniy [Water and People : The History and Today]. Voronezh, Tvorcheskoe ob”edinenie «Al’bom» Publ., 2004, 248 p. (In Russian)
  4. TCVN 33—2006. WaterSupply — Distribution System and Facilities — Design Standard. 2006, 190 p.
  5. Shcherbakov V.I., Nguen H.C. K raschetu sistemy vodosnabzheniya rayona Tkhu Dyk g. Khoshimin [Calculation of Water Supply of the District Thu Duc in Ho Chi Minh City]. Nauchnyy vestnik Voronezhskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. Vysokie tekhnologii. Ekologiya [Scientific Herald of the Voronezh State University of Architecture and Civil Engineering. Hightech. Ecology]. 2015, no. 1, pp. 155—159. (In Russian)
  6. Shcherbakov V.I., Nguen Kh.K. Problemy vodosnabzheniya krupnykh gorodov V’etnama [Problems of Water Supply in Large Cities of Vietnam]. Nauchnyy vestnik Voronezhskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. Stroitel’stvo i arkhitektura [Scientific Herald of the Voronezh State University of Architecture and Civil Engineering. Construction and Architecture]. 2015, no. 2, pp. 49—56. (In Russian)
  7. Larock B.E., Jeppson R.W., Watters G.Z. Hydraulics of Pipeline Systems. Florida, CRC Press LLC, 2000, 533 p.
  8. Menon E.S., Menon P.S. Working Guide to Pumps and Pumping Stations. Oxford, Linacre House, Jordan Hill, 2010, 283 p.
  9. American Water Works Association. Computer Modeling of Water Distribution Systems M32. Printed in the United States of America. 2005, 159 p.
  10. Adrien N.G. Computational Hydraulics and Hydrology. CRC Press LLC, Florida, 2004, 449 p.
  11. Bentley WaterGEMS V8i. Watertown. CT 06795 USA, 2012. Available at: http://www.bentley.com/en-US/Products/WaterGEMS/how-to-get.htm/. Date of access: 15.07.2015.
  12. Nguen H.C. Raschet i proektirovanie vodoprovodnykh setey na WaterCAD [Calculation and Design of Water Distribution Networks in the WaterCAD]. Nauchnyy vestnik Voronezhskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. Student i nauka [Scientific Herald of the Voronezh State University of Architecture and Civil Engineering. Student and Science]. 2008, no. 4, pp. 131—134. (In Russian)
  13. Sumithra R.P., Nethaji V.E., Amaranath J. Feasibility Analysis and Design of Water Distribution System for Tirunelveli Corporation Using Loop and Watergems. International Journal on Applied Bioengineering, Sathyabama University, Chennai, India. 2013, vol. 7, no. 1, pp. 61—71.
  14. Shcherbakov V.I., Panov M.Ya., Kvasov I.S. Analiz, optimal’nyy sintez i renovatsiya gorodskikh sistem vodosnabzheniya i gazosnabzheniya [Analysis, Optimal Synthesis and Renovation of City Water Supply and Gas Supply Systems]. Voronezh, VGASU Publ., 2001, 291 p. (In Russian)
  15. Panov M.Ya., Levadnyy A.S., Shcherbakov V.I., Stogney V.G. Modelirovanie, optimizatsiya i upravlenie sistemami podachi i raspredeleniya vody [Modeling, Optimization and Control of Water Supply and Distribution Systems]. Voronezh, VGASU Publ., 2005, 489 p. (In Russian)
  16. Walski T.M. Advanced Water Distribution Modeling and Management. Bentley Institute Press, 2003, 751 p.
  17. Barnard T., Durrans R., Lowry S., Meadows M. Computer Application in Hydraulic Engineering. 7th ed. Bentley Institute Press, 2006, 645 p.
  18. Panov M.Ya., Petrov Yu.F., Shcherbakov V.I. Modeli upravleniya funktsionirovaniem sistem podachi i raspredeleniya vody [Management Models of Functioning of Water Supply and Distribution Systems]. Voronezh, VGASU Publ., 2012, 272 p. (In Russian)
  19. Panov M.Ya., Shcherbakov V.I., Kvasov I.S. Modelirovanie vozmushchennogo sostoyaniya gidravlicheskikh sistem slozhnoy konfiguratsii na osnove printsipov energeticheskogo ekvivalentirovaniya [Simulation of the Perturbed State of Hydraulic Systems with Complex Configuration Based on the Principles of Energy Equivalenting]. Izvestiya Rossiyskoy akademii nauk. Energetika [News of the Russian Academy of Sciences. Energetics]. 2002, no. 6, pp. 130—137. (In Russian)
  20. Panov M.Ya., Shcherbakov V.I., Kvasov I.S. Metodologiya faktornogo analiza vodoraspredeleniya i vodopotrebleniya [Methodology of Factor Analysis of Water Allocation and Water Demand]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 2001, no. 5, pp. 82—87. (In Russian)
  21. Matynenko G.N., Panov M.Ya., Shcherbakov V.I., Davydov I.P. Optimal’nyy sintez gidravlicheskikh truboprovodnykh sistem v oblasti operativnogo upravleniya [Optimum Synthesis of Hydraulic Piping Systems in the Area of Operational Management]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 2004, no. 2, pp. 78—83. (In Russian)
  22. Adichai Pornorommin, Lipiwattanakarn Surachai, Chittaladakorn Suwatana. Numerical Simulation of Water Distribution System of Thungmahamek Branch, Bangkok, Thailand. International Symposium on Asian Simulation and Modeling 2007. Chiang Mai, Thailand, 2007, pp. 161—168.
  23. Pornprommin A., Lipiwattanakarn S., Chittaladakorn S. Water Distribution Network Analysis for DM A Design of Ladpra o Branch, Bangkok, Thailand. International Symposium on Managing Water Supply for Growing Demand. Bangkok, Thailand, 2006, pp. 45—50.

Download

Sources and causes of surface water pollution in Hanoi (Vietnam)

Vestnik MGSU 10/2018 Volume 13
  • Nguyen Dinh Dap - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Telichenko Valery I. - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Academician of RAACS, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Slesarev Mikhail Yu. - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor of the Department of Construction of Heat and Nuclear Power Facilities, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 1234-1242

Introduction. One of the most significant environmental problems facing the Vietnamese city of Hanoi is anthropogenic pollution of surface water, especially in the To Lich river system. Currently, these rivers accept large quantities of wastewater from urban areas and industrial zones, which effluents are not treated prior to discharge into water bodies. The results of the study show that surface water in Hanoi has been contaminated by direct discharge of domestic and industrial wastewater. Considered the To Lich river system, including the To Lich, Lu, Set and Kim Nguu rivers, which receive sewage pollution from urban areas, industrial zones and other sources. Materials and methods. The most common approach to improving the situation is to identify sources of syrface water pollution and assess the quality of To Lich river and its tributaries in order to develop and propose effective and synchronous solurion for the management of water safety and quality in the water bodies of Hanoi city. The water samples were preserved and analysed in the laboratory of Environmental Analysis in accordance with standard Vietnamese methods. For this purpose, analytic apparatus, including Shimadzu AAS 6800 atomic absorption spectrophotometre (Japan), UV-VIS spectrometre, as well as a number of common laboratory instruments and equipment, are used. Results. The results of the study show that surface water in Hanoi has been contaminated by direct discharge of domestic and industrial wastewater. For many years, the rivers have been covered with rubbish, with the water turning black in colour and having an unpleasant smell. The primary cause of the pollution is drainage from many surrounding households discharging waste water directly into the rivers. Conclusions. In order to restore the aqueous ecosystems of Hanoi city, it is necessary to conduct continuous environmental monitoring of changes in the state of water bodies and develop effective and timely solutions for the management of safety and quality of water in the waterways of Hanoi.

DOI: 10.22227/1997-0935.2018.10.1234-1242

Download

Results 1 - 3 of 3