RESEARCH OF BUILDING MATERIALS

RESEARCH OF SYNERGETIC PROPERTIES OF HIGH-STRENGTH STRUCTURAL STEEL 14Х2GMR IN THE AFTERMATH OF EXPOSURE TO HEAT TREATMENT

Vestnik MGSU 6/2012
  • Gustov Yuriy Ivanovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Profes- sor, Department of Machinery, Machine Elements and Process Metallurgy; +7 (499) 183-94-95, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Rus- sian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Allattouf Hassan Lattouf - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Mechanic Equip- ment, Details of Machines and Technology of Metals, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 79 - 82

The article represents a brief overview of the properties of steel type 14X2GMR (Russian standards), a high-performance synergetic structural steel exposed to different modes of heat treatment.
The author demonstrates that the best set of the steel properties was obtained upon its normalization (Option 5). An alternative option is Option 1 (water quenching). This steel demonstrates its ≈ 1,0, which indicates the proximity between the uniform δр value and the concentrated δc value as the constituents of δ, the elongation value.
The best set of δр ,Ψр ,p, c, Кзт and p/c values is demonstrated by the steel at the normal temperature of 20 °C. An alternative set of criteria properties is identified at -60 °С.
The final choice of the optimal heat treatment mode and the operating temperature is recommended to be based on the maximal values of = p/c and the static viscosity
c = 0,5(k - σT)1n[1/(1 - Ψ)].
Given the resistance of steel to cracking during welding (Δ= 1,5; PSK= -0,25<0), it can be recommended for heavy-duty welded parts and assemblies.

DOI: 10.22227/1997-0935.2012.6.79 - 82

References
  1. Bol’shakov V.I. Substrukturnoe uprochnenie konstruktsionnykh staley [Substructural Strengthening of Structural Steels], a monograph. Canada, 1998, 316 p.
  2. Spravochnik po spetsial’nym rabotam. Svarochnye raboty v stroitel’stve [Reference Book of Specialty Assignments. Welding in Construction]. Moscow, 1971, Part 1, 464 p.

Download

Determination of the temperature field and thermal stress state of the massive of stacked concrete by finite element method

Vestnik MGSU 11/2018 Volume 13
  • Aniskin Nikolay A. - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Hydraulics and hydraulic engineering, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Nguyen Trong Chuc - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student, Department of Hydraulics and hydraulic engineering, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Bryansky Ilya A. - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student, Department of Hydraulics and hydraulic engineering, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Dam Huu Hung - Moscow State University of Civil Engineering (National Research University) (MGSU) Master of the Department of Soil mechanics and geotechnics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 1407-1418

Introduction. Energy and hydraulic concrete structures, bridge structures, foundations of buildings are built with concrete blocks. Concreting of such massive structures is accompanied by the phenomenon of exothermic heating of the structure caused by the process of cement hydration. The heat released in such massive blocks under natural conditions is very slowly removed from the structure. Quite often, between the central part of the massif and its surface, there is a significant temperature drop. In the case of reaching a critical value of the temperature difference, temperature cracks occur that violate the solidity of the structure. For a preliminary assessment of the possibility of cracking and the development of measures to eliminate it, it is necessary to solve the temperature problem and the problem of determining the thermal stress state. This problem has long been in the center of attention of specialists and a large number of studies are devoted to it. Developed and used a large number of methods for solving these problems. However, in view of the great complexity of the task to be solved, caused by a multitude of operating factors and conditions, the complexity of the structures and the increased requirements for the safety of structures, the task of determining the temperature regime and the thermally stressed state of the erected concrete massif is still very relevant today. This paper presents some results of investigations in this direction, performed on the basis of the finite element method. An erected concrete block is considered, for which a non-stationary temperature problem is solved successively and the resulting temperature stresses are determined. The variants of block laying at different external temperature influences are considered. Materials and methods. The study was performed on the basis of the finite element method (FEM) using the Ansys software. Results. For the considered array concrete obtained temperature distribution and thermal stresses over time from the moment of packing to obtain a sufficient structural strength (about 30 days). On the basis of criteria assesses the possible occurrence of thermal cracks. Conclusions. Based on the numerical solution of the problems of determining the temperature regime and the thermally stressed state of the concrete block using the Ansys software complex, a detailed picture of the spatial no stationary state of the structural element, the concrete block, as part of a massive structure, has been obtained.

DOI: 10.22227/1997-0935.2018.11.1407-1418

Download

Results 1 - 2 of 2