Reliable and adequateengineering surveys for construction: the rule of two D

Vestnik MGSU 1/2014
  • Rakitina Natal'ya Nikolaevna - Mosgorgeotrest geologist, Geologic Supervi- sion Services, Mosgorgeotrest, 11 Leningradskiy Prospekt, Moscow, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Potapov Aleksandr Dmitrievich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Head, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 90-97

In the article the current state of quality supply of engineering surveys for construction is discussed. The main criteria for improving the design quality of buildings and structures for industrial, civil and other purposes is the reliability and adequacy of the results of engineering-geological surveys. The authors show the examples of inadequate study of engineering-geological conditions in the design of structures that led to emergency situations. Consideration of the reasons of accidents in structures showed that they are caused by lack of research conducted, the underestimation of the complexity of geological conditions. In the process of conducting geotechnical investigations the works were focused directly in the enclosure of a designed building, and the features of geological and hydrogeological conditions of the off-site were much more complex. In the process of construction during the sinking of the pit activation suffusion processes occurred, which led to an accident. Underestimation of the use of these geological funds in this example shows that even in the presence of fund materials, which are currently almost not increased, errors may occur due to the notorious savings for research. The requirements to ensuring the reliability and adequacy of engineering-geological surveys, which the authors call "The Rule of two D" (in Russian — Reliability and Adequacy), lie in the existing legal acts. The practice of fulfilling requirements to a large extend shows that the desire to save money at the stage of design and exploration works results in additional costs for additional design, recovery from accidents and works on a new project. The authors critically evaluated the development of engineering and geotechnical engineering instead of geological survey, which is not methodologically and theoretically substantiated and leads to the excluding from engineering surveys the consideration of the off-site geotechnical conditions directly below the designed structure. The authors give the recommendations for improving the examination quality of the results of surveys and recommendations on obligatory increase of geological funds.

DOI: 10.22227/1997-0935.2014.1.90-97

References
  1. Osipov V.I., Medvedev O.P., editors. Moskva. Geologiya i gorod [Moscow. Geology and the City]. Moscow, Moskovskie uchebniki i kartolitografiya Publ., 1997, 400 p.
  2. Platov N.A., Potapov A.D., Lavrova N.A., Potapov I.A., Kalashnikov M.A. Inzhenernogeologicheskie izyskaniya v slozhnykh usloviyakh [Geotechnical Investigations in Complicated Conditions]. Moscow, MGSU Publ, 2011, 130 p.
  3. Bryukhan' A.F., Bryukhan' F.F., Potapov A.D. Inzhenerno-ekologicheskie izyskaniya dlya stroitel'stva TES [Engineering and Ecological Studies for the Construction of Thermal Power Plants]. Moscow, ASV Publ., 2008, 193 p.
  4. Potapov A.D. Geotekhnika, est' li povod dlya diskussii [Geotechnics, is There a Reason for Debate]. Inzhenernaya geologiya [Engineering Geology]. 2009, no. 11, pp. 15—19.
  5. Kashperyuk P.I., Potapov A.D. Predmet geotekhniki — osnovaniya sooruzheniy?! [Is the Base of Structures the Subject of Geotechnics?!]. Inzhenernaya geologiya [Engineering Geology]. 2010, no. 1, pp. 12—15.
  6. Kalashnikov M.A., Kashperyuk P.I., Potapov I.A., Khomenko V.P., Potapov A.D. K voprosu o neobkhodimosti modernizatsii normativnykh dokumentov po inzhenerno-geologicheskim izyskaniyam v rayonakh rasprostraneniya karstovykh i suffozionnykh protsessov [On the Question of the Need of Normative Documents Modernization on Engineering and Geological Surveys in the Areas of Karst and Suffusion Processes]. Inzhenernye izyskaniya [Engineering Surveys]. 2010, no. 10, pp. 8—10.
  7. Ziangirov R.S., Potapov A.D. Eshche raz o pravil'nom ponimanii terminov «geotekhnika» i «inzhenerno-geotekhnicheskie izyskaniya» [Once More on the Correct Definition of the Terms "Geotechnics" and "Engineering and Geotechnical Surveys]. Inzhenernye izyskaniya [Engineering Surveys]. 2012, no. 9, pp. 9—12.

Download

MATHEMATICAL AND INFORMATION SUPPORT OF HYDRAULIC EXPERIMENTS AT PIPELINES

Vestnik MGSU 5/2013
  • Orlov Vladimir Aleksandrovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Head of the Department of Water Supply and Waste Water Treatment, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Zotkin Sergey Petrovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Informatics and Applied Mathematics; +7 (495) 953-36-35, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Koblova Elena Viktorovna - Moscow State University of Civil Engineering (MGSU) postgraduate student; Department of Water Supply; 7 (495) 516-96-88., Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 214-219

The article contains summarized results of the research into developed software programme capable of processing findings of hydraulic experiments held at pressure pipelines (protective coatings). The authors describe the algorithm of the analysis procedure, sequential analysis, mathematical and hydro-mechanical modeling of the process of transformation of hydraulic values. The authors provide their concept of the dialog box and description of input and output information, as well as functions of the software programme at intermediate stages of the hydraulic analysis. Basic input information supplied into the hydraulic analysis software programme includes the pipeline, its inner diameter, length, and acceptable roughness error.Whenever a user presses the “display result” button, interim information is displayed on the screen and, if necessary, a set of output information is provided in the form of tables and graphs. The choice for the optimal solution is made on the basis of the minimum margin of error between experimental and analytical values of the pipe roughness.The findings may be useful to researchers involved in the study of hydraulic characteristics of pipelines made of various materials and to designers and builders engaged in renovation of sections of pipelines.

DOI: 10.22227/1997-0935.2013.5.214-219

References
  1. Khramenkov S.V. Strategiya modernizatsii vodoprovodnoy seti [Strategy for Modernization of a Water Supply Network]. Moscow, Stroyizdat Publ., 2005, 398 p.
  2. Orlov V.A., Orlov E.V., Pimenov A.V. Podkhody k vyboru ob”ekta renovatsii na truboprovodnoy seti, vosstanavlivaemoy polimernym rukavom [Approaches to the Choice of the Renovated Section of a Pipeline Restored by a Polymeric Sleeve]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 3, pp. 129—131.
  3. Zotkin S.P., Orlov V.A., Orlov E.V., Maleeva A.V. Algoritm i avtomatizirovannaya programma optimizatsii vybora metoda bestransheynogo vosstanovleniya napornykh i beznapornykh truboprovodov [Algorithm and Software Programme for Optimization of Choice for the Method of Trenchless Renovation of Pressure and Free-flow Pipelines]. Nauchnoe obozrenie [Scientific Review]. 2011, no. 4, pp. 61—65.
  4. Khurgin R.E., Orlov V.A., Zotkin S.P., Maleeva A.V. Metodika i avtomatizirovannaya programma opredeleniya koeffitsienta Shezi «S» i otnositel’noy sherokhovatosti «n» dlya beznapornykh truboprovodov [Methodology and Software Programme for Identification of Chezy Factor and Relative Roughness for Free-flow Pipelines]. Nauchnoe obozrenie [Scientific Review]. 2011, no. 4, pp. 54—60.
  5. Orlov V.A., Maleeva A.V. Vodootvodyashchie truboprovodnye seti. Vybor ob”ekta renovatsii na baze ranzhirovaniya destabiliziruyushchikh faktorov [Water Discharge Pipeline Networks. Choice of an Item to Be Renovated on the Basis of the Ranking of Destabilizing Factors]. Tekhnologii Mira [World Technologies]. 2011, no. 1, pp. 31—34.
  6. Kiselev P.G. Spravochnik po gidravlicheskim raschetam [Reference Book of Hydraulic Analysis]. Moscow, Energiya Publ., 1972, 312 p.
  7. Al’tshul’ A.D., Zhivotovskiy L.S., Ivanov L.P. Gidravlika i aerodinamika [Hydraulics and Aerodynamics]. Moscow, Stroyizdat Publ., 1987, 414 p.
  8. Shevelev F.A., Shevelev A.F. Tablitsy dlya gidravlicheskogo rascheta vodoprovodnykh trub. [Tables for Hydraulic Analysis of Water Supply Pipelines]. Moscow, Stroyizdat Publ., 1984, 117 p.
  9. Al’tshul’ A.D. Gidravlicheskie soprotivleniya [Hydraulic Resistances]. Moscow, Nedra Publ., 1970, 216 p.
  10. Prozorov I.V., Nikoladze G.I., Minaev A.V. Gidravlika, vodosnabzhenie i kanalizatsiya gorodov. [Hydraulics, Water Supply and Urban Sewage]. Moscow, Vyssh. shk. publ., 1975, 422 p.

Download

Results 1 - 2 of 2