DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

IDENTIFICATION OF WIND LOAD APPLIED TO THREE-DIMENSIONAL STRUCTURES BY VIRTUE OF ITS SIMULATION IN THE WIND TUNNEL

Vestnik MGSU 7/2012
  • Doroshenko Sergey Aleksandrovich - Moscow State University of Civil Engineering (MSUCE) postgraduate student, Department of Theoretical Mechanics and Aerodynamics, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Doroshenko Anna Valer'evna - Moscow State University of Civil Engineering (MSUCE) postgraduate student, Department of Informatics and Applied Mathematics, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Orekhov Genrikh Vasil'evich - Moscow State University of Civil Engineering (MSUCE) Candidate of Technical Sciences, Associated Professor, Head of Laboratory of Aerodynamic and Acoustic Testing of Building Structures, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 69 - 74

The authors discuss wind loads applied to a set of two buildings. The wind load is simulated with the help of the wind tunnel.
In the Russian Federation, special attention is driven to the aerodynamics of high-rise buildings and structures. According to the Russian norms, identification of aerodynamic coefficients for high-rise buildings, as well as the influence of adjacent buildings and structures, is performed on the basis of models of structures exposed to wind impacts simulated in the wind tunnel. This article deals with the results of the wind tunnel test of buildings. The simulation was carried out with the involvement of a model of two twenty-three storied buildings. The experiment was held in a wind tunnel of the closed type at in the Institute of Mechanics of Moscow State University.
Data were compared at the zero speed before and after the experiment. LabView software was used to process the output data. Graphs and tables were developed in the Microsoft Excel package. GoogleSketchUp software was used as a visualization tool.
The three-dimensional flow formed in the wind tunnel can't be adequately described by solving the two-dimensional problem. The aerodynamic experiment technique is used to analyze the results for eighteen angles of the wind attack.

DOI: 10.22227/1997-0935.2012.7.69 - 74

References
  1. Simiu E., Scanlan R. Vozdeystvie vetra na zdaniya i sooruzheniya [Wind Effects on Structures]. Moscow, Stroyizdat Publ., 1984, 360 p.
  2. Savitskii G.A. Vetrovaya nagruzka na sooruzheniya [Wind Loads Applied to Structures]. Moscow, 1972, 110 p.
  3. Berezin M.A., Katyushin V.V. Atlas aerodinamicheskikh kharakteristik stroitel’nykh konstruktsiy [Atlas of Aerodynamic Characteristics of Building Structures]. Novosibirsk, Olden-Poligrafiya Publ., 200 p.
  4. Doroshenko S.A. Eksperimental’noe opredelenie vetrovogo vozdeystviya na ploskie elementy stroitel’nykh konstruktsiy [Experimental Identification of Wind Effects on Plane Building Elements]. Fundamental’nye nauki v sovremennom stroitel’stve, 7th scientific and practical conference. [Proceedings of the Seventh All-Russian Scientific and Practical Conference “Fundamental Sciences in Contemporary Civil Engineering”]. Moscow, MSUCE, 2010, pp. 175—179.

Download

Results 1 - 1 of 1