Error
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering

Educing anisotropy of strength properties of foam concrete bricks used for constructing a wall for curtain wall systems

Vestnik MGSU 8/2015
  • Tsykanovskiy Evgeniy Yul’evich - LLC DIAT Candidate of Technical Sciences, honorable builder of Russia, recipient of prize of the Government of the Russian Federation in Science and Technology, Director General, LLC DIAT, 3 Marshala Sokolovskogo str., Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Alisultanov Ramidin Semedovich - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student, Assistant Lecturer, Department of Engineering Geodesy, Moscow State University of Civil Engineering (National Research University) (MGSU), ; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Oleynikov Aleksandr Vladimirovich - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student, Assistant Lecturer, Department of Engineering Geodesy, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kagan Mikhail Lazarevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Physical and Mathematical Sciences, Professor, Department of Higher Mathematics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation.
  • Pekov Islam Al’bertovich - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student, Department of Construction Materials and Products, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 92-100

Curtain wall systems are widely used in the modern construction at building industrial and civil buildings. Works of many Russian and foreign researchers are dedicated to investigation of such structures operation. The main task solved during the use of curtain wall systems is reduction of energy consumption for heating. In this regard the fa?ade systems may be fixed both at rather stable walls having though high thermal conductivity produced of brick and concrete and at the walls of aerated concrete (foam concrete) bricks having lower thermal conductivity. The authors offer preliminary results of the mechanical strength tests of foam concrete bricks. The anisotropy of strength under compression along different edges (axes) was educed, which reached up to 200 %. The authors underline the importance of account for anisotropy of strength properties of foam concrete bricks during the design of fa?ade systems and during monitoring of their state.

DOI: 10.22227/1997-0935.2015.8.92-100

References
  1. Bessonov I.V. Vliyanie temperaturno-vlazhnostnykh vozdeystviy na dolgovechnost’ fasadnykh sistem na osnove mineral’nykh vyazhushchikh [Influence of Temperature and Humidity on Durability of Facade Systems Based on Mineral Binders]. ALITinform: Tsement. Beton. Sukhie smesi [ALITinform: Cement. Concrete. Dry Mixes]. 2007, no. 1, pp. 35—41. (In Russian)
  2. TR 161-05. Tekhnicheskie rekomendatsii po proektirovaniyu, montazhu i ekspluatatsii navesnykh fasadnykh sistem [TR 161-05. Technical Recommendations on Design, Construction and Operation of Curtain wall Systems]. Pravitel’stvo Moskvy [The Government of Moscow]. Moscow, 2005, 15 p. (In Russian)
  3. Vorob’ev V.N. Navesnye fasadnye sistemy : problemy bezopasnosti, proektirovanie NFS, proizvodstvo montazhnykh rabot, krepezh, pozharnaya bezopasnost’, osnovnye pravila ekspluatatsii NFS [Curtain Wall Systems : the Issues of Safety, Design, Construction Works, Fixing, Fire Safety, Main Rules of Their Operation]. Vladivostok, Dal’Nauka Publ., 2011, 72 p. (In Russian)
  4. Granovskiy A.V., Kiselev D.A. Eksperimental’nye issledovaniya raboty ankernogo krepezha pri dinamicheskikh vozdeystviyakh [Experimental Research of Anchor Fastener at Dynamic Impacts]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Seismic Construction. Safety of Structures]. 2012, no. 1, pp. 43—45. (In Russian)
  5. Tsykanovskiy E.Yu. Problemy nadezhnosti, bezopasnosti i dolgovechnosti NFS pri stroitel’stve vysotnykh zdaniy [Problems of Rliability, Safety and Durability of Curtain Wall Systems during Construction of High-rise Buildings]. Tekhnologii stroitel’stva [Technologies of Construction]. 2006, no. 1, pp. 20—22. (In Russian)
  6. Emel’yanova V.A., Nemova D.V., Miftakhova D.R. Optimizirovannaya konstruktsiya navesnogo ventiliruemogo fasada [Optimized Structure of Hinged Ventilated Facade]. Inzhenerno-stroitel’nyy zhurnal [Engineering and Construction Journal]. 2014, no. 6 (50), pp. 53—66. (In Russian)
  7. Kocks U.F., Tomé C.N., Wenk H.-R. Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties. Cambridge, 2000, 688 p.
  8. Ash J.E., Hughes B.P. Anisotropy and Failure Criteria for Concrete. Matériaux et Construction. Nov.—Dec. 1970, vol. 3, no. 6, pp. 371—374. DOI: http://dx.doi.org/10.1007/BF02478760.
  9. Yong-Hak Lee A., Yeong-Seong Park, Young-Tae Joo B., Won-Jin Sung C., Byeong-Su Kang D. Anisotropic Loading Criterion for Depicting Loading Induced Anisotropy in Concrete. Fracture Mechanics of Concrete and Concrete Structures — Recent Advances in Fracture Mechanics of Concrete — B.H. Oh, et al. (eds) 2010, Korea Concrete Institute, Seoul. Available at: http://framcos.org/FraMCoS-7/04-01.pdf. Date of access: 11.11.2014.
  10. Ashcroft I.A. Fatigue Load Conditions. Handbook of Adhesion Technology. Springer, 2011, pp. 845—874.
  11. Reed-Hill R.E., Abbaschian R. Physical Metallurgy Principles. 3rd ed. Boston, PWS Publishing Company, 1994, pp. 230—233.
  12. Callister W.D.Jr. Materials Science and Engineering, an Introduction. 3rd ed. New York, John Wiley & Sons, Inc., 1994, 820 p.
  13. Baranova A.A., Savenkov A.I. Penoobrazovateli i prochnost’ penobetona [Foam Maker and Foam Concrete Durability]. Izvestiya Sochinskogo gosudarstvennogo universiteta [Izvestiya Sochi State University]. 2014, no. 3 (31), pp. 10—14. (In Russian)
  14. Gulyaev V.T., Ganik S.V. Vliyanie kachestva peska na svoystva penobetona [Influence of Sand Quality on Foam Concrete Properties]. Vologdinskie chteniya : materialy nauchnoy konferentsii. Vladivostok, dekabr’ 2011. Vyp. 80 [Vologdinsky Readings : Materials of the Scientific Conference. Vladivostok, December 2011, issue 80]. Vladivostok, Izdatel’skiy dom Dal’nevostochnogo federal’nogo universiteta Publ., 2012, pp. 35—36. (In Russian)
  15. Kobidze T.E., Korovyakov V.F., Kiselev A.Yu., Listov S.V. Vzaimosvyaz’ struktury peny, tekhnologii i svoystv poluchaemogo penobetona [Interrelation of Foam Structure, Technology and Properties of the Obtained Concrete]. Stroitel’nye materialy [Construction Materials]. 2005, no. 1, pp. 26—29. (In Russian)
  16. Rubtsov O.I., Rubtsov I.V. Veroyatnostno-statisticheskie metody monitoringa sooruzheniy [Probability-Statistical Methods of Structures Monitoring]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2006, no. 6, pp. 44—45. (In Russian)
  17. Stepnov M.N. Statisticheskaya obrabotka rezul’tatov mekhanicheskikh ispytaniy [Statistical Processing of Mechanical Tests’ Results]. Moscow, Mashinostroenie Publ., 1972, 232 p. (In Russian)
  18. Doerffel K. Statistik in der analytischen Chemie. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1982.
  19. Volkov A.A., Rubtsov I.V. Postroenie kompleksnykh sistem prognozirovaniya i monitoringa chrezvychaynykh situatsiy v zdaniyakh, sooruzheniyakh i ikh kompleksakh [Design of Integrated Systems Designated for the Forecasting and Monitoring of Emergencies in Buildings, Structures and Their Clusters]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 1, pp. 208—212. (In Russian)
  20. Rubtsov I.V., Kukhta A.V. Nekotorye zadachi monitoringa i perspektivy ikh resheniya na primere fasadnykh sistem [Some Tasks of Monitoring and Prospects of Their Solution on the Example of Facade Systems]. Krovel’nye i izolyatsionnye materialy [Roofing and Insulating Materials]. 2007, no. 7, pp. 44—45. (In Russian)
  21. Rubtsov I.V. Monitoring na stadii vozvedeniya sooruzheniya [Monitoring on the Construction Stage of a Structure]. Integral [Integral]. 2007, no. 5, pp. 86—87. (In Russian)
  22. Rubtsov I.V. Zadachi monitoringa na stadii ekspluatatsii sooruzheniya [Monitoring Tasks on the Operation Stage of a Building]. Integral [Integral]. 2007, no. 6, pp. 102—103. (In Russian)

Download

The results of masonry and reinforced masonry research

Vestnik MGSU 3/2014
  • Sokolov Boris Sergeevich - Kazan State University of Architecture and Engineering (KazGASU) Doctor of Technical Sciences, Professor, corresponding member of the Russian academy of architecture and building sciences, head, Department of Reinforced Concrete and Masonry Structures, Kazan State University of Architecture and Engineering (KazGASU), 1 Zelyonaya St., Kazan, 420043, Republic of Tatarstan; (843) 238-25-93; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Antakov Aleksey Borisovich - Kazan State University of Architecture and Engineering (KazGASU) Candidate of Technical Science, Associate Professor, Department of Reinforced Concrete and Masonry Structures, Kazan State University of Architecture and Engineering (KazGASU), 1 Zelyonaya St., Kazan, 420043, Republic of Tatarstan; (843)273-03-22; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 99-106

In the article the survey results of durability and crack resistance investigation of masonry are presented. The aim of the investigations is improving calculation methods of masonry and reinforced masonry. The relevancy of the problem is determined by the necessity of new efficient materials implementation. In accordance with scientific search methodology complex investigations were carried out, which includes gathering, analyzing and revising the existing data on the topic together with determining essential factors and their value rate. Within the framework of the investigations the features of masonry have been studied. The developed calculation method on the basis of the theory of resistance of anisotropic materials at the compression, which reflects the stress-strain state features and nature of destruction, allows to carry out an assessment of durability and crack resistance of the compressed members and structures made of masonry. The research results can be used at revising or updating the existing normative documents.

DOI: 10.22227/1997-0935.2014.3.99-106

References
  1. Sokolov B.S. Teoriya silovogo soprotivleniya anizotropnykh materialov szhatiyu i ee prakticheskoe primenenie: monografi ya [Theory of Strength Resistance to Compression of Anisotropic Materials and its Practical Application. Monograph]. Moscow, ASV Publ., 2011, 160 p.
  2. Sokolov B.S., Antakov A.B. Issledovaniya szhatykh elementov kamennykh i armokamennykh konstruktsiy [Study of Compressed Elements of Masonry and Reinforced Masonry Structures]. Moscov, ASV Publ., 2010, 104 p.
  3. Onishchik L.I. Kamennye konstruktsii [Masonry Structures]. Moscow, Gosudarstvennoye Izdatel'stvo stroitel'noy literatury Publ., 1939, 208 p.
  4. SP 15.13330.2012. Kamennye i armokamennye konstruktsii. Normy proektirovaniya [Regularities 15.13330.2012. Masonry and Reinforced Masonry Structures. Design Norms]. Minregion Rossii Publ.. Moscow, 2012, 78 p.
  5. Sokolov B.S., Antakov A.B., Fabrichnaya K.A. Kompleksnye issledovaniya prochnosti pustotelo-porizovannykh keramicheskikh kamney i kladok pri szhatii [Complex Investigations of Hollow Porous Ceramic Masonry under Compression]. Vestnik grazhdanskikh inzhenerov [Proceedings of Civil Engineers]. 2012, no. 5(34), pp. 65—71.
  6. Eurocode 6. Design of Masonry Struktures. Part. 1-1: General Rules for Buildings. Rules for Reinforced and Unreinforced Masonry. Brussels, 1994, 200 p.
  7. Zuccyini A., Louren?o P.B. Mechanics of Masonry in Compression. Result from a Homogenization Approach. Computers and Structures. 2007, vol. 85, no, 3—4, pp. 193—204. DOI: 10.1016/j.compstruc.2006.08.054.
  8. Dykhovichnyy Yu.A., Kolchunov V.I., editors. Zhilye i obshchestvennye zdaniya: kratkiy spravochnik inzhenera-konstruktora [Residential and Public Buildings: Quick Reference of Design Engineer]. Moscow, 2011, ASV Publ., vol. 1, 360 p.

Download

Strength and durability tests of pipeline supports for the areas of above-ground routing under the influence of operational loads

Vestnik MGSU 3/2014
  • Surikov Vitaliy Ivanovich - Research Institute of Oil and Oil Products Transportation (NII TNN) Deputy Director General for the Technology of Oil and Oil Products Transportation, Research Institute of Oil and Oil Products Transportation (NII TNN), 9-5, 2 Verhniy Mikhaylovskiy proezd, 115419, Moscow, Rus- sian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Bondarenko Valeriy Vyacheslavovich - Limited Liability Company "Konar" ("Konar") Candidate of Technical Sciences, director, Limited Liability Company "Konar" ("Konar"), 5 Hlebozavodskaya st, 454038, Chely- abinsk, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Korgin Andrey Valentinovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Supervisor, Scientific and Educational Center of Constructions Investigations and Examinations, Department of Test of Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-54-29; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Shonin Kirill Sergeevich - Joint stock company “Konar” (JSC “Konar”) head, Designing Department of the project “Metal Structures”, Joint stock company “Konar” (JSC “Konar”), 4b Prospect Lenina, 454085, Chelyabinsk; +7 (351) 222-33-00; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Mikheev Yuriy Borisovich - Research Institute for Oil and Oil Products Transportation (NII TNN) chief specialist, Department of Mechanical and Processing Equipment for the Pipeline Transportation Facilities, Research Institute for Oil and Oil Products Transportation (NII TNN), 47A Sevastopolskiy prospect, 117186, Moscow, Russian Federation; +7 (495) 950-82-95 (25-41); This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 117-125

The present article deals with integrated research works and tests of pipeline supports for the areas of above-ground routing of the pipeline system “Zapolyarye - Pur-pe” which is laid in the eternally frozen grounds. In order to ensure the above-ground routing method for the oil pipeline “Zapolyarye - Pur-pe” and in view of the lack of construction experience in case of above-ground routing of oil pipelines, the leading research institute of JSC “Transneft” - LLC “NII TNN” over the period of August, 2011 - September, 2012 performed a research and development work on the subject “Development and production of pipeline supports and pile foundation test specimens for the areas of above-ground routing of the pipeline system “Zapolyarye - Pur-pe”. In the course of the works, the test specimens of fixed support, linear-sliding and free-sliding pipeline supports DN1000 and DN800 were produced and examined. For ensuring the stable structural reliability of the supports constructions and operational integrity of the pipelines the complex research works and tests were performed: 1. Cyclic tests of structural elements of the fixed support on the test bed of JSC “Diascan” by means of internal pressure and bending moment with the application of specially prepared equipment for defining the pipeline supports strength and durability. 2. Tests of the fixed support under the influence of limit operating loads and by means of internal pressure for confirming the support’s integrity. On the test bed there were simulated all the maximum loads on the support (vertical, longitudinal, side loadings, bending moment including subsidence of the neighboring sliding support) and, simultaneously, internal pressure of the carried medium. 3. Cyclic tests of endurance and stability of the displacements of sliding supports under the influence of limit operating loads for confirming their operation capacity. Relocation of the pipeline on the sliding supports from temperature expansion in case of preheated oil charge into a “cold” pipeline was simulated. 4. Cyclic tests of durability of frictional couples under the influence of operational and maximum loads. On the test bed there were examined various materials for the sliding surface of the supports, ensuring the norm friction coefficient.

DOI: 10.22227/1997-0935.2014.3.117-125

References
  1. Opory dlya truboprovodov na uchastkakh nadzemnoy prokladki truboprovodnoy sistemy «Zapolyar'e — NPS „Pur-Pe“»: Spetsial'nye tekhnicheskie trebovaniya [Supports for the Pipelines on the Areas of Above-ground Routing of the Pipeline System “Zapolyarye — Purpe”: Special Technical Requirements]. 2012, 92 p.
  2. Petrov I.P., Spiridonov V.V. Nadzemnaya prokladka truboprovodov [Above-ground Pipelining]. Moscow, Nedra Publ., 1973, 472 p.
  3. Kazakevich M.I., Lyubin A.E. Proektirovanie metallicheskikh konstruktsiy nadzemnykh promyshlennykh truboprovodov [Metal Structures Design for Above-ground Industrial Pipelines]. 2nd Edition. Kiev, Budivel'nik Publ., 1989, 160 p.
  4. McFadden T.T., Lawrense Bennett F. Construction in Cold Regions: A Guide for Planners, Engineers, Contractors, and Managers. Wiley Series of Practical Construction Guides. Wiley-Interscience, 1 edition, 1991, 640 p.
  5. Palmer A. Arctic Pipelines and the Future. Journal of Pipeline Engineering. 2011, vol. 10, no. 2.
  6. Coates P. Trans-Alaskan Pipeline Controversy: Technology, Conservation, and the Frontier. University of Alaska Press, 1 edition, 1993, 447 p.
  7. Cole D. Amazing Pipeline Stories: How Building the Trans-Alaska Pipeline Transformed Life in America's Last Frontier. Paperback, Epicenter Press, 1997, 224 p.
  8. Tiratsoo J. Trans Alaska Pipeline System. Pipelines International, ISSUE 004, 2010.
  9. Amerikanskaya tekhnika i promyshlennost': sbornik reklamnykh materialov [American Technologies and Industry: Collection of Advertizing Materials]. Moscow, V/O «Vneshtorgreklama» Publ, Chilton Ko, 1977, no. III, 407 p.
  10. Tipovye konstruktsii i detali zdaniy i sooruzheniy [Standard Constructions and Components of Buildings and Structures]. Seriya 4.903-10. Izdeliya i detali truboprovodov dlya teplovykh setey [Series 4.903-10. Items and Components of Pipelines for Heating Networks]. Vyp. 4. Opory truboprovodov nepodvizhnye [no.4. Fixed Pipeline Supports]. Leningrad, Leningradskiy filial proektno-tekhnologicheskogo instituta «Energomontazhproekt» Publ., 1972, 111 p.
  11. Unifi tsirovannaya dokumentatsiya na konstruktsii i uzly zdaniy i sooruzheniy [Unified Documentation for the Constructions and Node Points of Buildings and Structures]. Seriya 5.903-13. Izdeliya i detali truboprovodov dlya teplovykh setey [Series 5.903-13. Items and Components of Pipelines for Heating Networks]. Vyp. 8-95. Opory truboprovodov podvizhnye [no. 8-95. Pipeline Supports]. Rabochie chertezhi Publ., 2013, 199 p.
  12. Otchet po rezul'tatam poseshcheniya ob"ektov NK «Rosneft'» spetsialistami OAO «AK «Transneft'» [Report on the Visiting the Objects of the Oil Company “Rosneft” by the Specialists of JSCo «AK «Transneft'»]. 2011, p. 28.
  13. SP 16.13330.2011. Stal'nye konstruktsii [Rules and Regularities 16.13330.2011. Steel Structures]. 177 p.
  14. GOST 11629—75. Plastmassy. Metody opredeleniya koeffi tsienta treniya [All Union State Standard 11629—75. Methods of Friction Coefficient Determination]. 3 p.
  15. Surikov V.I., Varshitskiy V.M., Bondarenko V.V., Korgin A.V., Bogach A.A. Primenenie metoda konechnykh elementov pri raschete na prochnost' opor truboprovodov dlya uchastkov nadzemnoy prokladki nefteprovoda «Zapolyar'e — NPS “Pur-Pe”» [Using Finite Element Method in the Process of Strength Calculation for the Pipeline Supports in Above-Ground Area of "Zapolyar'e — NPS "Pur-Pe" Oil Pipeline]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 1, pp. 66—74.

Download

Peculiarities of stress distribution in beamless floor plate as a result of prestressing forces

Vestnik MGSU 9/2014
  • Kremnev Vasiliy Anatol'evich - LLC "InformAviaKoM" Director General, LLC "InformAviaKoM", 2 Pionerskaya str., Korolev, Moscow Region, 141074, Russian Federation; +7 (495) 645-20-62; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kuznetsov Vitaliy Sergeevich - Mytishchi Branch, Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Architectural and Construction Design, Mytishchi Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospect, Mytishchi, Moscow Region, 141006, Russian Federation; +7 (495) 583-07-65; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Talyzova Yulia Aleksandrovna - Mytishchi Branch, Moscow State University of Civil Engineering (MGSU) Assistant Lecturer, Department of Architectural and Construction Design, Mytishchi Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospect, Mytishchi, Moscow Region, 141006, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 48-53

The article discusses the features of the stress state of the plate of capitalless girderless overlapping as a result of force of prestressed reinforcement, where the reinforcement used is high-strength reinforcement in flexible shell of "Monostrend" type. The peculiarity of specific design solution is a diagonal arrangement of prestressed reinforcement with heads fixed at the outer edges of the columns. The purpose of this arrangement of the prestressed reinforcement is deflection reduction of the central area of a plate and reduction of the width of cracks on the lower surface in the bay and on the upper surface of the support areas. The article shows the distribution of normal stresses of existing loads in the plane plate. The stress distribution over the thickness of the plate was assumed uniform. In order to establish design size of a section in diagonal direction it is possible to set the variables x and y and then calculate the coordinates of stress distribution curves in the concrete as a result of compression by prestress force. The authors offer diameter values of equal stresses in case of 4 and 8 K7O ropes. The method of calculating prestressing losses of concrete creep are offered.

DOI: 10.22227/1997-0935.2014.9.48-53

References
  1. Rukovodstvo po proektirovaniyu zhelezobetonnykh konstruktsiy s bezbalochnymi perekrytiyami [Design Guidelines for Reinforced Concrete Structures with Beamless Floor]. Moscow, Stroyizdat Publ., 1979, 63 p.
  2. Pogrebnoy I.O., Kuznetsov V.D. Bezrigel'nyy predvaritel'no napryazhennyy karkas s ploskim perekrytiem [Beamless Prestressed Frame with Flat Roof]. Inzhenerno-stroitel'nyy zhurnal [Engineering and Construction Journal]. 2010, no. 3, pp. 52—55.
  3. Karpenko N.I. Obshchie modeli mekhaniki zhelezobetona [General Models of Reinforced Concrete Mechanics]. Moscow, Stroyizdat Publ., 1996, 416 p.
  4. Beglov A.D., Sanzharovskiy R.S. Teoriya rascheta zhelezobetonnykh konstruktsiy na prochnost' i ustoychivost' : Sovremennye normy i Evrostandarty [Theory of Strength and Stability Calculation of Reinforced Concrete Structures]. Moscow, Saint Petersburg, ASV Publ., 2006, 221 p.
  5. Vol'mir A.S. Gibkie plastinki i obolochki [Flexible Plates and Shells]. Moscow, Gosudarstvennoe izdatel’stvo tekhniko-teoreticheskoy literatury Publ., 1956, 419 p.
  6. Muttoni A. Conception et dimensionnement de la precontrainte. Ecole Polytechnique federale de Lausanne, Ann?e acad?mique 2011—2012, 35 p. Available at: http://i-concrete.epfl.ch/cours/epfl/pb/2012/Pr%C3%A9sentations/ponts-1-P-2012-05-08.pdf/. Date of access: 22.01.2014.
  7. Sitnikov S.L., Miryushenko E.F.; patent holder S.L. Sitnikov. Pat. 2427686 RF, MPK E04C 5/10. Sposob izgotovleniya predvaritel'no napryazhennykh zhelezobetonnykh konstruktsiy i monostrend. ¹ 2009132979/03 ; zayavl. 02.09.2009 ; opubl. 27.08.2011. Byul. ¹ 24 [Russian Patent 2427686 RF, MPK E04C 5/10. Method of Manufacturing Prestressed Reinforced Concrete Structures and Monostrends. No. 2009132979/03 ; notice 02.09.2009 ; publ. 27.08.2011. Bulletin no. 24.]. 8 p.
  8. Spasojevic A., Burdet O., Muttoni A. Applications structurales du beton fiber ultra-hautes performances aux ponts. EPFL, Laboratoire de Construction en beton, 2008, 60 p. Available at: http://ibeton.epfl.ch/Publications/2008/Spasojevic08b.pdf/. Date of access: 22.01.2014.
  9. Tikhonov I.N. Armirovanie elementov monolitnykh zhelezobetonnykh zdaniy : Posobie po proektirovaniyu [Reinforcement of the Elements of Monolithic Reinforced Concrete Buildings]. Moscow, NITs Stroitel'stvo Publ., 2007, 168 p.
  10. Wieczorek M. Influence of Amount and Arrangement of Reinforcement on the Mechanism of Destruction of the Corner Part of a Slab-Column Structure. Prosedia Engineering. 2013, vol. 57, pp. 1260—1268. Available at: http://www.sciencedirect.com/science/article/pii/S1877705813008928. Date of access: 22.02.2014. DOI: http://dx.doi.org/10.1016/j.proeng.2013.04.159.
  11. Vatin N.I., Ivanov A.D. Sopryazhenie kolonny i bezrebristoy beskapitel'noy plity perekrytiya monolitnogo zhelezobetonnogo karkasnogo zdaniya [Connection of a Column and Non-ribbed Capitalless Slab of Monolithic Reinforced Concrete Frame Building]. Saint Petersburg, SPbODZPP Publ., 2006, 82 p. Available at: http://www.engstroy.spb.ru/library/ivanov_kolonna_i_perekrytie.pdf. Date of access: 22.01.2014.
  12. Samokhvalova E.O., Ivanov A.D. Styk kolonny s bezbalochnym beskapitel'nym perekrytiem v monolitnom zdanii [The Joint of a Column and Beamless Capitalless Floor in Monolithic Building]. Inzhenerno-stroitel'nyy zhurnal [Engineering and Construction Journal]. 2009, no. 3. Available at: http://engstroy.spb.ru/index_2009_03/samohvalova_styk.pdf. Date of access: 22.01.2014.
  13. Bezukhov N.I. Osnovy teorii uprugosti, plastichnosti i polzuchesti [Fundamentals of Elasticity and Creep Theory]. 2nd edition, Moscow, Vysshaya shkola Publ., 1968, 512 p.
  14. Altenbach H., Huang C., Naumenko K. Creep-damage Predictions in Thinwalled Structures by Use of Isotropic and Anisotropic Damage Models. The Journal of Strain Analisys for Engineering Design. 2002, vol. 37, no. 3, pp. 265—275. http://dx.doi.org/10.1243/0309324021515023.
  15. Altenbach H., Morachkovsky O., Naumenko K., Sychov A. Geometrically Nonlinear Bending of Thin-walled Shells and Plates under Creep-damage Conditions. Archive of Applied Mechanics. 1997, vol. 67, no. 5, pp. 339—352. DOI: http://dx.doi.org/10.1007/s004190050122.

Download

Kinetics of strength gain of biocidal cements

Vestnik MGSU 12/2014
  • Rodin Aleksandr Ivanovich - Ogarev Mordovia State University (MGU im. Ogareva) Candidate of Technical Sciences, Senior Lecturer, Department of Economy and Management in Construction, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Erofeev Vladimir Trofimovich - Ogarev Mordovia State University (MGU im. Ogareva) Doctor of Technical Sciences, Professor, Chair, Department of Construction Materials and Technologies, dean, Department of Architecture and Construction, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Pustovgar Andrey Petrovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Professor, Vice Rector for Research, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Eremin Aleksey Vladimirovich - Moscow State University of Civil Engineering (MGSU) head, laboratory of Physical and Chemical Analysis, Scientific and Research Institute of Construction Materials and Technologies, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Pashkevich Stanislav Aleksandrovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, head, Laboratory of Climatic Tests, Scientific and Research Institute of Construction Materials and Technologies, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 656-14-66; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Bogatov Andrey Dmitrievich - Ogarev Mordovia State University (MGU im. Ogareva) Candidate of Technical Sciences, Associate Professor, Department of Construction Materials and Technologies, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kaznacheev Sergey Valer’evich - Ogarev Mordovia State University (MGU im. Ogareva) Candidate of Technical Sciences, Associate Professor, Department of Construction Materials and Technologies, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Adamtsevich Aleksey Olegovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, head, Principal Regional Center of Collective Use of Scientific Institute of Construction Materials and Technologies, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 656-14-66; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 88-97

Biocorrosion becomes the determinative durability factor of buildings and constructions. Damages of construction materials caused by bacteria, filamentous fungi, actinomycetes constitute a serious danger to the constructions of a building or a structure and to the health of people. Biodeteriorations are typical both in old and new constructions. A great quantity of destruction factors of industrial and residential buildings under the influence of microorganisms was established in practice. Providing products and constructions based on concretes fungicidal and bactericidal properties is an important direction of modern construction material science. The most efficient way to solve this task is creation of biocidal cements. The article presents the results of experimental studies of kinetic dependences of strength gain by biocidal cements by physico-mechanical and physico-chemical analysis methods. The identical velocity character of initial hydration of the developed compositions of biocidal cements is set, as well as a more calm behavior of hardening processes at later terms. It has been established that the compositions of biocidal cements modified by sodium sulfate and sodium fluoride possess the greatest strength.

DOI: 10.22227/1997-0935.2014.12.88-97

References
  1. Andreyuk E.I., Kozlova I.A., Kopteva Zh.P. Mikrobnaya korroziya podzemnykh sooruzheniy [Microbial Corrosion of Underground Constructions]. Biopovrezhdeniya i biokorroziya v stroitel’stve : materialy II Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Biodeteriorations and Biocorrosion in Construction: Materials of the 2nd International Scientific-technical Conference]. Saransk, Mordovia State University Publ., 2006, pp. 79—99. (In Russian)
  2. Gorlenko M.V. Nekotorye biologicheskie aspekty biodestruktsii materialov i izdeliy [Some Biological Aspects of Biodestruction of Materials and Products]. Biopovrezhdeniya v stroitel’stve [Biodeteriorations in Construction]. Moscow, 1984, pp. 9—17. (In Russian)
  3. Ivanov F.M. Biokorroziya neorganicheskikh stroitel’nykh materialov [Biocorrosion of Inorganic Building Materials]. Biopovrezhdeniya v stroitel’stve [Biodeteriorations in Construction]. Moscow, 1984, pp. 183—188. (In Russian)
  4. Kanevskaya I.G. Biologicheskoe povrezhdenie promyshlennykh materialov [Biological Damage of Industrial Materials]. Leningrad, Nauka Publ., 1984, 230 p. (In Russian)
  5. Lugauskas A.Yu., Mikul’skene A.I., Shlyauzhene D.E. Katalog mikromitsetov — biodestruktorov polimernykh materialov: biologicheskie povrezhdeniya [Catalog of Micromycetes — Biodestructors of Polymeric Materials: Biological Deteriorations]. M.V. Gorlenko, editor. Moscow, Nauka Publ., 1987, 340 p. (In Russian)
  6. Pokrovskaya E.N., Koteneva I.V. Biopovrezhdeniya istoricheskikh pamyatnikov [Biodeterioration of Historic Monuments]. Biopovrezhdeniya i biokorroziya v stroitel’stve : materialy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Biodeteriorations and Biocorrosion in Construction: Materials of International Scientific-technical Conference]. Saransk, Mordovia State University Publ., 2004, pp. 245—248. (In Russian)
  7. Turkova Z.A. Mikroflora materialov na mineral’noy osnove i veroyatnye mekhanizmy ikh razrusheniya [Florula of Materials on a Mineral Basis and Probable Mechanisms of their Destruction]. Mikologiya i fitopatologiya [Mycology and phytopathology]. 1974, vol. 8, no. 3, pp. 219—226. (In Russian)
  8. Videla H.A., Herrera L.K. Microbiologically Infl uenced Corrosion: Looking to the Future. International Microbiology. 2005, no. 8(3), pp. 169—180.
  9. Javaherdashti R. Microbiologically Infl uenced Corrosion. An Engineering Insight. Springer-Verlag, UK, 2008, 164 p.
  10. Little B.J., Lee J.S. Microbiologically Infl uenced Corrosion. John Wiley & Sons, Inc., Hoboken, New Jersey, 2007, 294 p.
  11. Ramesh Babu B., Maruthamuthu S., Rajasekar A. Microbiologically Infl uenced Corrosion in Dairy Effl uent. International Journal of Environmental Science & Technology. 2006, vol. 3, no. 2, pp. 159—166. DOI: http://dx.doi.org/10.1007/BF03325920.
  12. Erofeev V.T., Komokhov P.G., Smirnov V.F., Svetlov D.A., Kaznacheev S.V., Bogatov A.D., Morozov E.A., Vasil’ev O.D., Makarevich Yu.M., Spirin V.A., Patsyuk N.A. Zashchita zdaniy i sooruzheniy ot mikrobiologicheskikh povrezhdeniy biotsidnymi preparatami na osnove guanidina [Protection of Buildings and Structures from Biological Damages Using Biocidal Agents Based on Guanidine]. Under the general editorship of P.G. Komokhov, V.T. Erofeev, G.E. Afi nogenov. Saint Petersburg, Nauka Publ., 2009, 192 p. (In Russian)
  13. Antonov V.B. Vliyanie biopovrezhdeniy zdaniy i sooruzheniy na zdorov’e cheloveka [Effect of Biodeterioration of Buildings on Human Health]. Biopovrezhdeniya i biokorroziya v stroitel’stve : materialy II Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Biodeteriorations and Biocorrosion in Construction: Materials of the 2nd International Scientific-technical Conference]. Saransk, Mordovia State University Publ., 2006, pp. 238—242. (In Russian)
  14. Il’ichev V.D., Bocharov B.V., Gorlenko M.V. Ekologicheskie osnovy zashchity ot biopovrezhdeniy [Ecological Bases of Protection against Biodamages]. Moscow, Nauka Publ., 1985, 262 p. (In Russian)
  15. Erofeev V.T., Rimshin V.I., Bazhenov Yu.M., Travush V.I., Karpenko N.I., Magdeev U.Kh., Zhidkin V.F., Burnaykin N.F., Rodin A.I., Smirnov V.F., Bogatov A.D., Kaznacheev S.V. Patent 2491240 RF, MPK C04B 7/52. Biotsidnyy portlandtsement ; ¹ 2012107722/03; zayavl. 29.02.2012; opubl. 27.08.2013. Byul. ¹ 24 [Patent of the Russian Federation no. 2491240, MPK S04V7/52. Biocidal Portland Cements ; no. 2012107722/03; appl. 29.02.2012; publ. 27.08.2013. Bulletin no. 24.]. Patent holder : Ogarev Mordovia State University, 4 p. (In Russian)
  16. Svetlov D.A. Biotsidnye preparaty na osnove proizvodnykh poligeksametilenguanidina [Biocidal Agents on the Basis of Derivatives of a polyhexamethylen poligeksametilenguanidinguanidine]. Zhizn’ i bezopasnost’ [Life and Safety]. 2005, no. 3—4. (In Russian)
  17. Adamtsevich A.O., Pashkevich S.A., Pustovgar A.P. Ispol’zovanie kalorimetrii dlya prognozirovaniya rosta prochnosti tsementnykh sistem uskorennogo tverdeniya [Use of Calorimetry for Forecasting the Increase in Durability of Cement Systems of the Accelerated Curing]. Inzhenerno-stroitel’nyy zhurnal [Magazine of Civil Engineering]. 2013, no. 3, pp. 36—42. (In Russian)
  18. Pashkevich S., Pustovgar A., Adamtsevich A., Eremin A. Pore Structure Formation of Modifi ed Cement Systems, Hardening over the Temperature Range from +22 °C to –10 °C. Applied Mechanics and Materials. 2014, vol. 584—586, pp. 1659—1664. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMM.584-586.1659.
  19. Makridin N.I., Tarakanov O.V., Maksimova I.N., Surov I.A. Faktor vremeni v formirovanii fazovogo sostava struktury tsementnogo kamnya [Time Factor in the Formation of Phase Structure of a Cement Stone Structure]. Regional’naya arkhitektura i stroitel’stvo [Regional Architecture and Construction]. 2013, no. 2, pp. 26—31. (In Russian)
  20. Jansen D., Goetz-Neunhoeffer F., Lothenbach B., Neubauer J. The early hydration of Ordinary Portland Cement (OPC): An approach comparing measured heat fl ow with calculated heat fl ow from QXRD. Cement and Concrete Research. 2012, vol. 42, no. 1, pp. 134—138. DOI: http://dx.doi.org/10.1016/j.cemconres.2011.09.001.
  21. Bullard J.W., Jennings H.M., Livingston R.A., Nonat A., Scherer G.W., Schweitzer J.S., Scrivener K.L., Thomas J.J. Mechanisms of Cement Hydration. Cement and Concrete Research. 2011, vol. 41, no. 12, pp. 1208—1223. DOI: http://dx.doi.org/10.1016/j.cemconres.2010.09.011.

Download

Analysis of strength of monolithic beamless floors using the limitequilibrium method

Vestnik MGSU 7/2013
  • Kuznetsov Vitaliy Sergeevich - Mytishchi Branch, Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Architectural and Construction Design, Mytishchi Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospect, Mytishchi, Moscow Region, 141006, Russian Federation; +7 (495) 583-07-65; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Talyzova Yulia Aleksandrovna - Mytishchi Branch, Moscow State University of Civil Engineering (MGSU) Assistant Lecturer, Department of Architectural and Construction Design, Mytishchi Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospect, Mytishchi, Moscow Region, 141006, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 51-58

The authors present features of the strength analysis of monolithic beamless floors, obtained using the limit equilibrium method. This method consists in the following procedure: a monolithic plate bends and breaks in the limit equilibrium under a uniformly distributed load. The influence of various combinations and dimensions of column sections on bending moments are considered. The influence of cross-sectional dimensions of columns on values of effective forces is analyzed in detail. The general equation to solve the strength problems of monolithic plates, having regular grids of columns exposed to continuous uniform loads, is derived and solved by the authors. This expression can be applied to calculate the span and support moments and to establish optimal reinforcement of plates. Results of calculations are presented in graphs that make it possible to derive interesting findings.

DOI: 10.22227/1997-0935.2013.7.51-58

References
  1. Timoshenko S.P., Voynovskiy-Kriger S. Plastinki i obolochki [Plates and Shells] Moscow, 1959, pp. 274—283.
  2. Nikonorov S.V., Tarasova O.A. Tekhnologiya rannego nagruzheniya monolitnykh perekrytiy pri ispol’zovanii balochno-stoechnoy opalubki [Technology of Early Loading of Monolithic Slabs Using Rack-girder Formwork]. Inzhenerno-stroitel’nyy zhurnal [Civil Engineering Journal]. 2010, no. 4. Available at: http://www.engstroy.spb.ru. Date of access: Dec. 5, 2012.
  3. Soudki Kh., El-Sayed A.K., Vanzwolc T. Strengthening of Concrete Slab-column Connections Using CFRP Strips. Journal of King Saud University Engineering Sciences. January 2012, vol. 24, no. 1, pp. 25—33. Available at: http://www. sciencedirect.com. Date of access: Apr. 10, 2013.
  4. Zenunovica D., Folic R. Models for Behavior Analysis of Monolithic Wall and Precast or Monolithic Floor Slab Connections. Engineering Structures. July 2012, vol. 40, pp. 466—478. Available at: http://www. sciencedirect.com. Date of access: Apr. 10, 2013.
  5. Dorfman A.E., Levontin L.N. Proektirovanie bezbalochnykh beskapitel’nykh perekrytiy [Design of Beamless Cap-free Floors]. Moscow, Stroyizdat Publ., 1975, pp. 11—22, 36—46.
  6. Shtaerman M.Ya., Ivyanskiy A.M. Bezbalochnye perekrytiya [Beamless Floors]. Moscow, 1953, pp. 47—64.
  7. Zolotkov A.S. Vibratsionnye ispytaniya fragmentov monolitnykh zdaniy do razrusheniya [Vibration Testing of Fragments of Monolithic Buildings to Fracture]. Inzhenerno-stroitel’nyy zhurnal [Civil Engineering Journal]. 2012, no 1. Available at: http://www.engstroy.spb.ru. Date of access: Dec. 5, 2012.
  8. Wieczorek M. Influence of Amount and Arrangement of Reinforcement on the Mechanism of Destruction of the Corner Part of a Slab-Column Structure. Proñedia Engineering. 2013, vol. 57, pp. 1260—1268. Available at: http://www. sciencedirect.com. Date of access: Apr. 10, 2013.
  9. Malakhova A.N. Usilenie monolitnykh plit perekrytiy zdaniy stenovoy konstruktivnoy sistemy [Strengthening Monolithic Slabs of Buildings Having Wall Structural Systems]. Nauchno-prakticheskiy Internet zhurnal «Nauka. Stroitel’stvo. Obrazovanie» [Science and Practical Journal “Science, Construction, Education”]. 2012, no. 4. Available at: http://www.nso-journal.ru. Date of access: March 31, 2013.
  10. Pogrebnoy I.O., Kuznetsov V.D. Bezrigel’nyy predvaritel’no napryazhennyy karkas s ploskim perekrytiem [Beamless Pre-stressed Frame Having a Flat Slab]. Inzhenerno-stroitel’nyy zhurnal [Civil Engineering Journal]. 2010, no 3. Available at: http://www.engstroy.spb.ru. Date of access: Dec. 5, 2012.
  11. Samokhvalova E.O., Ivanov A.D. Styk kolonny s bezbalochnym beskapitel’nym perekrytiem v monolitnom zdanii [Juncture of a Column and Beamless Cap-free Floors in a Monolithic Building]. Inzhenerno-stroitel’nyy zhurnal [Civil Engineering Journal]. 2009, no 3. Available at: http://www.engstroy.spb.ru. Date of access: Dec. 5, 2012.

Download

Features of the effect of dynamic loading produced on the concrete behavior at different stages of deformation caused by uniaxialand biaxial compression

Vestnik MGSU 7/2013
  • Tsvetkov Konstantin Aleksandrovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Strength of Materials; +7 (499) 183-43-29, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Mitrokhina Anastasiya Olegovna - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Strength of Materials; +7 (499) 183-43-29, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 77-85

The authors examine the impact of dynamic loads produced on the strength and deformability properties of concretes and their micro-cracking. The experiment performed and analyzed by the authors consisted in the dynamic loading of a concrete sample that caused its destruction. The analysis of the experimental findings consisted in the identification of specific conditions of cracking, derivation of dependencies and compilation of charts. The following conclusions are made in furtherance of the authors’ analysis of the experiment in question:1) experimental findings help identify the nature of influence of the stress state on the strength value, deformability and micro-cracking of concretes. For example, it is discovered in the process of the experiments that the lower bound of the microracking dynamics increases more significantly than the prism strength.2) Regularities of influence of the rise in the loading intensity produced on concrete deformation properties are identified. The key factor of the concrete destruction is not the nature of the deformation, but the value of the overall strain.

DOI: 10.22227/1997-0935.2013.7.77-85

References
  1. Karpenko N.I. Obshchie modeli mekhaniki zhelezobetona [General Models of Reinforced Concrete Mechanics]. Moscow, Stroyizdat Publ., 1996.
  2. Tsvetkov K.A. Osnovnye rezul’taty eksperimental’no-teoreticheskikh issledovaniy prochnostnykh i deformativnykh svoystv betona pri dinamicheskom nagruzhenii v usloviyakh odnoosnogo i dvukhosnogo szhatiya [Principal Findings of Theoretical and Experimental Research into Strength and Deformability-related Properties of Concrete Exposed to Dynamic Loading in the Conditions of Uniaxial and Biaxial Compression]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2007, no. 3, pp. 109—120.
  3. Malashkin Yu.N., Ish V.G. Beton v dvukhosnom napryazhennom sostoyanii «rastyazhenie-szhatie» [Concrete in the Biaxial Stress State of “Tension-Compression”. In the book: Issledovanie monolitnosti i raboty betona massivnykh sooruzheniy [Research into Integrity and Behaviour of the Concrete of Massive Concrete Structures]. Moscow, MISI Publ., 1975, pp. 120—130.
  4. Bakirov R.O., Emyshev M.V., Maystrenko V.N. Vliyanie skorosti nagruzheniya na granitsy mikrotreshchinoobrazovaniya vysokoprochnykh betonov [Influence of Loading Rate onto Micro-cracking Bounds of High-strength Concretes]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 1982, no. 9, pp. 32—33.
  5. Rakhmanov V.A., Rozovskiy E.L. Vliyanie dinamicheskogo vozdeystviya na prochnostnye i deformativnye svoystva tyazhelogo betona [Influence of Dynamic Impacts on Strength and Deformability Properties of Heavy Concretes]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 1987, no. 7, pp. 19—20.
  6. Bazhenov Yu.M. Beton pri dinamicheskom nagruzhenii [Concrete Exposed to Dynamic Loading]. Moscow, Stroyizdat Publ.,1971, 271 p.
  7. Rykov G.V., Obledov V.P., Mayorov E.Yu., Abramkina V.T. Eksperimental’nye issledovaniya protsessov deformirovaniya i razrusheniya betonov pri intensivnykh dinamicheskikh nagruzkakh [Experimental Research into Processes of Deformation and Destruction of Concretes Exposed to Intensive Dynamic Loads]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural Mechanics and Analysis of Structures]. 1989, no. 5, pp. 54—59.
  8. Ross C.A., Tedesco J.W., Kuennen S.T. Effects of Strain Rate on Concrete Strength. Materials Journal, January 1, 1995, pp. 37—47.
  9. Zielinski A.J. Concrete Structures under Impact Loading. Rate effects. Internal Report. Delft University of Technology, Faculty Civil Engineering and Geosciences, 1984, pp. 12—31.

Download

Featuresof the stress-and-strain state of outer walls under the influence of variable temperatures

Vestnik MGSU 10/2013
  • Kremnev Vasiliy Anatol'evich - LLC "InformAviaKoM" Director General, LLC "InformAviaKoM", 2 Pionerskaya str., Korolev, Moscow Region, 141074, Russian Federation; +7 (495) 645-20-62; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kuznetsov Vitaliy Sergeevich - Mytishchi Branch, Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Architectural and Construction Design, Mytishchi Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospect, Mytishchi, Moscow Region, 141006, Russian Federation; +7 (495) 583-07-65; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Talyzova Yuliya Aleksandrovna - Moscow State University of Civil Engineering (MGSU) Assistant, Department of Architectural and Structural Design, Mytishchi Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospect, Mytishchi, Moscow Region, 141006, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 52-59

The authors draw attention to possible problems in the process of construction and operation of monolithic frame buildings, construction of which is now widespread. It is known that cracks can often appear in the facade and side walls. The size of the cracks can exceed the allowable limits and repair does not lead to their complete elimination. Also cracks significantly mar the appearance of a building. Thus, the relevance of this study lies not only in fuller understanding of the operation of walls, but also in the ability to prevent undesirable effects.The authors calculated temperature effects for boundary walls of the building blocks made of heavy concrete. The original dimensions of the walls conformed to a grid of columns for the majority of residential and public buildings.The stress-and-strain state of the walls in case of temperature changes is observed in detail, including the transition from sub-zero to above-zero temperatures within the same section (wall). It was revealed that the temperature variations within the established limits may cause stress-and-strain state in the walls, in which the temperature tensile stresses can exceed the tensile strength of materials. The article contains effective means of reducing thermal strains, which can prevent temperature and shrinkage cracking.

DOI: 10.22227/1997-0935.2013.10.52-59

References
  1. Krivoshein A.D., Fedorov S.V. K voprosu o raschete privedennogo soprotivleniya teploperedache ograzhdayushchikh konstruktsiy [On the Problem of Calculating the Reduced Thermal Resistance of Building Envelopes]. Inzhenerno-stroitel'nyy zhurnal [Magazine of Civil Engineering]. 2010, no. 8. Available at: http://www.engstroy.spb.ru Date of access: 5.12.12.
  2. Derkach V.N., Orlovich R.B. Voprosy kachestva i dolgovechnosti oblitsovki sloistykh kamennykh sten [Issues of Quality and Durability of the Lining of Layered Stone Walls]. Inzhenerno-stroitel'nyy zhurnal [Magazine of Civil Engineering]. 2011, no. 2. Available at: http://www.engstroy.spb.ru Date of access: 5.12.12.
  3. Soon-Ching Ng, Kaw-Sai Low, Ngee-Heng Tioh. Newspaper Sandwiched Aerated Lightweight Concrete Wall Panels — Thermal inertia, transient thermal behavior and surface temperature prediction. Energy and Buildings. 2011, vol. 43, no. 7, pp. 1636—1645.
  4. Sami A. Al-Sanea, Zedan M.F. Effect of Thermal Bridges on Transmission Loads and Thermal Resistance of Building Walls under Dynamic Conditions. Applied Energy. 2012, vol. 98, pp. 584—593.
  5. Chengbin Zhang, Yongping Chen, Liangyu Wu, Mingheng Shi. Thermal Response of Brick Wall Filled with Phase Change Materials (PCM) under Fluctuating Outdoor Temperatures. Energy and Buildings. 2011. vol. 43, no. 12, pp. 3514—3520.
  6. Pinsker V.A., Vylegzhanin V.P. Teplofizicheskie ispytaniya fragmenta kladki steny iz gazobetonnykh blokov marki po plotnosti D400 [Thermophysical Test of a Segment of Masonry Walls Made of Aerated Concrete Blocks Mark with the Density D400]. Inzhenernostroitel'nyy zhurnal [Magazine of Civil Engineering]. 2009, no. 8. Available at: http://www.engstroy.spb.ru Date of access: 10.07.13.
  7. Knat'ko M.V., Gorshkov A.S., Rymkevich P.P. Laboratornye i naturnye issledovaniya dolgovechnosti (ekspluatatsionnogo sroka sluzhby) stenovoy konstruktsii iz avtoklavnogo gazobetona s oblitsovochnym sloem iz silikatnogo kirpicha [Laboratory and Field Studies of Durability (Operating Life) of a Wall Structure Made of Autoclave Aerated Concrete with Facing Layer made of Sand-lime Brick]. Inzhenerno-stroitel'nyy zhurnal [Magazine of Civil Engineering]. 2009, no. 8. Available at: http://www.engstroy.spb.ru Date of access: 10.07.13.
  8. Ogorodnik V.M., Ogorodnik Yu.V. Nekotorye problemy obsledovaniya zdaniy s otdelkoy litsevym kirpichom v Sankt-Peterburge [Some Problems of the Inspection of Buildings having Face Brick Finishing in St. Petersburg]. Inzhenerno-stroitel'nyy zhurnal [Magazine of Civil Engineering]. 2010, no. 7. Available at: http://www.engstroy.spb.ru Date of access: 7.02.12.
  9. Snegirev A.I., Al'khimenko A.I. Vliyanie temperatury zamykaniya pri vozvedenii na napryazheniya v nesushchikh konstruktsiyakh [The Influence of Circuit Temperature on the Stresses in the Process of Construction of Load-bearing Structures]. Inzhenerno-stroitel'nyy zhurnal [Magazine of Civil Engineering]. 2008, no. 2. Available at: http://www.engstroy.spb.ru Date of access: 7.02.12.
  10. Karpilovskiy V.S. SCADOFFICE. Vychislitel'nyy kompleks Scad [SCADOFFICE. Computing System Scad]. Moscow, 2011, pp. 274—283.

Download

Strength of the expandedstretching profile: tests and mathematical modeling

Vestnik MGSU 12/2013
  • Sinelnikov Aleksey Sergeevich - Saint Petersburg State Polytechnical University (SPbGPU) postgraduate student, Department of Unique Buildings and Structures Engineering, Saint Petersburg State Polytechnical University (SPbGPU), 29 Polytechnicheskaya, st., St.Petersburg, 195251, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Orlova Anna Vladimirovna - Saint Petersburg State Polytechnical University (SPbGPU) student, Department of Unique Buildings and Structures Engineering, Saint Petersburg State Polytechnical University (SPbGPU), 29 Polytechnicheskaya, st., St.Petersburg, 195251, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 41-54

This summary report is based on the experimental and numerical research of thin-walled cross-section’s compression resistance carried out in St. Petersburg State Polytechnical University. Current situation on the Russian market concerning the usage of cold-formed thin walled cross-sections is aimed at finding out a base foundation to start up a stipulation of the elements under discussion in the building industry. Some questions about the compression resistance of such cross-sections were raised at different conferences by scientific community and such companies as Arsenal ST, Baltprofile (Russia) and Rautaruukki Oyj (Finland). In this field a number of Doctoral theses have been defended during recent years in Russia (A.R. Tusnin, G.I. Belyy, I.V. Astakhov, D.V. Kuz'menko). Steel galvanized Cand U-profiles and thermo-profiles are the types of thin-walled cross-sections are normally used in small houses construction. Thermo-profiles have slots in webs that decrease the thermal flow through the web, but have negative effect on strength of the profiles. Reticular-stretched thermo-profile is a new type of thin-walled cross-sections that found its place on Russian market. These profiles were an object of the research. The carried out investigations included tests to prove the compression resistance of the thin-walled cross-sections. The compression tests as a result showed the behavior of stud’s profile under critical load. The specimen was compressed under various loads and deformation was recorded. In order to get buckling force a load-deformation diagram was plotted and analyzed. Analytical modeling of thin-walled cross-sections was done with contemporary analysis software (SCAD Office) using finite element method (FEM). During the modeling process the thin-walled profile based on shelland bar-elements were created and buckling analysis task showed good results.

DOI: 10.22227/1997-0935.2013.12.41-54

References
  1. Shatov D.S. Konechnoelementnoe modelirovanie perforirovannykh stoek otkrytogo secheniya iz kholodnognutykh profiley [Finite Element Modelling of Perforated Stays of Open Section Made of Cold-bent sections]. Inzhenerno stroitel'nyy zhurnal [Engineering Construction Journal]. 2011, no. 3, pp. 32—34.
  2. Gordeeva A.O., Vatin N.I. Raschetnaya konechno-elementnaya model' kholodnognutogo perforirovannogo tonkostennogo sterzhnya v programmno-vychislitel'nom komplekse SCADOffice. Inzhenerno stroitel'nyy zhurnal [Calculation Finite Element Model of a Cold-formed Perforated Thin-wall Shank in Programming and Computing Suite SCADOffice]. 2011, no. 3, pp. 36—46.
  3. Zhmarin E.N. Mezhdunarodnaya assotsiatsiya legkogo stal'nogo stroitel'stva [International Assosiation of Light Steel Engineering]. Stroitel'stvo unikal'nykh zdaniy i sooruzheniy [Construction of Unique Buildings and Structures]. 2012, no. 2, pp. 27—30.
  4. Yurchenko V.V. Proektirovanie karkasov zdaniy iz tonkostennykh kholodnognutykh profiley v srede «SCADOffice» [Buildings Framework Modellng Made of Thin-wall Cold-formed Profiles in SCADOffice]. Inzhenerno stroitel'nyy zhurnal [Engineering Construction Journal]. 2010, no. 8, pp. 38—46.
  5. Vatin N.I., Popova E.N. Termoprofil' v legkikh stal'nykh stroitel'nykh konstruktsiyakh [Thermal Profile in Light Steel Building Structures]. Saint Petersburg, SPbGPU Publ., 2006, 63 p.
  6. Kolesov A.I., Lapshin A.A., Valov A.V. Sovremennye metody issledovaniya tonkostennykh stal'nykh konstruktsiy [Modern Methods of Examining Thin-Wall Steel Structures]. Privolzhskiy nauchnyy zhurnal [Volga Scientific Journal]. 2007, no. 1, pp. 28—33.
  7. Kretinin A.N., Krylov I.I. Osobennosti raboty tonkostennoy balki iz gnutykh otsinkovannykh profiley [Operation Features of Thin-wall Beam Made of Roll-Formed Zink-Coated Sections]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel'stvo [News of Institutions of Higher Education. Engineering]. 2008, no. 6, pp. 1—11.
  8. Hartmut Pasternak and John Ermopoulos. Design of Steel Frames with Slender Joint-panels. Journal of Constructional Steel Research. 1995, vol. 35, no. 2, pp. 165—187.
  9. Kesti J. Local and Distortional Buckling of Perforated Steel Wall Studs. Dissertation for the Degree of Doctor of Science in Technology. Espoo, 2000, 101 p. + app.19 p.
  10. Markku Heinisuo. Comparative Study of Multiple Criteria Decision Making Methods for Building Design. Advanced Engineering Informatics. October 2012, vol. 26, no. 4, pp. 716—726.
  11. Tusnin A.R. Chislennyy raschet konstruktsiy iz tonkostennykh sterzhney otkrytogo profilya [Numerical Calculations of the Structures Made of Thin-Wall Shanks of Open Profile]. Moscow, ASV Publ., 2009, 143 p.
  12. Tusnin A.R. Osobennosti chislennogo rascheta konstruktsiy iz tonkostennykh sterzhney otkrytogo profilya [Features of Numerical Calculations of the Structures Made of Thin-Wall Shanks of Open Profile]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2010, no. 11, pp. 60—63.
  13. Perel'muter A.V., Slivker V.I. Raschetnye modeli sooruzheniy i vozmozhnost' ikh analiza [Calculation Models of Structures and Possibilities of Their Analysis]. Moscow, DMK Press Publ., 2002, 618 p.
  14. Slivker V.I. Stroitel'naya mekhanika [Structural Mechanics]. Moscow, ASV Publ., 2005, 736 p.
  15. Perel'muter A.V., Kriksunov E.Z., Karpilovskiy V.S., Malyarenko A.A. Integrirovannaya sistema dlya rascheta i proektirovaniya nesushchikh konstruktsiy zdaniy i sooruzheniy SCAD Office [Integrated System for Calculation and Design of the Bearing Structuresnof Buildings in SCAD Office]. Novaya versiya, novye vozmozhnosti. Inzhenerno stroitel'nyy zhurnal [New Version, New Possibilities. Engineering Construction Journal]. 2009, no. 2, pp. 10—12.
  16. Kriksunov E.Z., Perel'muter A.V., Yurchenko V.V. Proektirovanie flantsevykh soedineniy ramnykh uzlov [Design of Flanfe Seams of Frame Nods]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2010, no. 2, pp. 33—37.
  17. Winter G. Light Gauge (Thin-Walled) Steel Structures for Building in the U.S.A. Preliminary Publication, 4th Congress of the International Association for Bridge and Engineering, 1952, p. 524.
  18. Pekoz T. Development of a Unified Approach to the Design of Cold-formed Steel Members. Research Report CF 87-1, American Iron and Steel Institute, 1987.
  19. Hancock G.J. Light Gauge Construction. Progress in Structural Engineering and Materials. 1997, pp. 25—26.
  20. Gioncu V. General theory of coupled instabilities. Thin-Walled Structures, 1994, p. 19(2—4).
  21. Belyy G.I., Astakhov I.V. Issledovanie vliyaniya razlichnykh faktorov na prostranstvennuyu ustoychivost' sterzhnevykh elementov iz kholodnognutykh profiley [Research on the Influence of Various Factors on Spatial Stability of Axial Elements Made of Cold-Formed Profiles]. Aktual'nye problemy sovremennogo stroitel'stva: Doklady 68-y nauchnoy konferentsii professorov, prepodavateley, nauchnykh rabotnikov, inzhenerov i aspirantov universiteta [Current Issues of Contemporary Engineering: Reports of the 68th Scientific Conference of the Professors, Lecturers, Research Workers, Engineers and Postgraduate Students of the University]. Saint Petersburg, SPbGASU Publ., 2011, p. 27.
  22. Belyy G.I. Raschet uprugoplasticheskikh tonkostennykh sterzhney v poprostranstvenno-deformiruemoy skheme [Calculation of Thin-Wall Elastic-Plastic Shank in Spatial Deformable Scheme] Stroitel'naya mekhanika sooruzheniy: mezhvuzovskiy tematicheskiy sbornik trudov [Structural Mechanics of Buildings: Interuniversity Thematical Collection of Works]. LISI. 1983, no. 42, pp. 40—48.
  23. Cheng Y., Schafer B.W. Simulation of Cold-formed Steel Beams in Local and Distortional Buckling with Applications to the Direct Strength Method. Journal of Constructional Steel Research. 2007, vol. 63, no. 5, pp. 581—590.
  24. Rasmussen K.J.R. Experimental Investigation of Local-overall Interaction Buckling of Stainless Steel Lipped Channel Columns. Journal of Constructional Steel Research. 2009, vol. 65, no. 8—9, pp. 1677—1684.
  25. Smaznov D.N. Ustoychivost' pri szhatii sostavnykh kolonn, vypolnennykh iz profiley iz vysokoprochnoy stali [Stability in Compression of Composite Columns Made of High-tension Steel Profiles]. Inzhenerno stroitel'nyy zhurnal [Engineering Construction Journal]. 2009, no. 3, pp. 42—49.
  26. Smaznov D.N. Konechno-elementnoe modelirovanie stoek zamknutogo secheniya iz kholodnognutykh profiley [Finite Element Modeling of the Stands of Closed Section Made of Cold-formed Profiles]. Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta [Scientific and Research News of Saint Petersburg State Polytechnic University]. 2011, no. 123, pp. 334—337.

Download

Strength calculation of supportareas in reinforced concrete beam structures

Vestnik MGSU 12/2013
  • Dorofeev Vitaliy Stepanovich - Odessa State Academy of Civil Engineering and Architecture (OGASA) Doctor of Technical Sciences, Professor, Rector, Head, Department of Reinforced Concrete and Masonry Structures, Odessa State Academy of Civil Engineering and Architecture (OGASA), 4 Didrikhsona st., Odessa, 65029, Ukraine; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Karpyuk Vasiliy Mikhaylovich - Odessa State Academy of Civil Engineering and Architecture (OGASA) Doctor of Technical Sciences, Professor, Vice-rector for Research and Education, International Relations and Eurointegration, Department of Reinforced Concrete end Masonry Structures, Odessa State Academy of Civil Engineering and Architecture (OGASA), 4 Didrikhsona st., Odessa, 65029, Ukraine; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Krantovskaya Elena Nikolaevna - Odessa State Academy of Civil Engineering and Architecture (OGASA) Candidate of Technical Sciences, Associate Professor, Professor, Department of Strength of Materials, Odessa State Academy of Civil Engineering and Architecture (OGASA), 4 Didrikhsona st., Odessa, 65029, Ukraine; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Petrov Nikolay Nikolaevich - Odessa State Academy of Civil Engineering and Architecture (OGASA) Candidate of Technical Sciences, Associate Professor, Department of Strength of Materials, Odessa State Academy of Civil Engineering and Architecture (OGASA), 4 Didrikhsona st., Odessa, 65029, Ukraine; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Petrov Aleksey Nikolaevich - Odessa State Academy of Civil Engineering and Architecture (OGASA) Chief of Laboratory, Department of Strength of Materials, Odessa State Academy of Civil Engineering and Architecture (OGASA), 4 Didrikhsona st., Odessa, 65029, Ukraine; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 55-67

The co-authors present the main results of experiments dealing with the study of strength properties of the support areas of common, whole, pre-stressed, eccentrically tensioned and compressed reinforced concrete beams. New destruction patterns of support areas of said structures are identified and their dependence on the appropriate relationship of the studied factors was established. A new general engineering method to calculate the strength of support areas of such elements which is based upon a selection and sequential analysis of possible destruction patterns was developed.

DOI: 10.22227/1997-0935.2013.12.55-67

References
  1. Tur V.V., Molosh V.V. Novye podkhody k raschetu soprotivleniya mestnomu srezu (prodavlivaniyu) ploskikh plit [New Approaches to the Calculation of Reinforced Concrete Structures under the Action of Shearing Forces]. Vestnik BrGTU. Stroitel’stvo i arkhitektura [Proceedings of Belgorod State Technological University Named after V.G. Shukhov. Construction and Architecture]. 2011, no. 2, pp. 18—31.
  2. Gol’shev A.B., Kolchunov V.I., Smolyago G.A. Eksperimental’noe issledovanie zhelezobetonnykh elementov pri sovmestnom deystvii izgibayushchego momenta i poperechnykh sil [Experimental Research of Reinforced Concrete Elements under the Action of Flexion Moment and Transverse Force]. Issledovanie stroitel’nykh konstruktsiy i sooruzheniy [Research of Building Constructions and Structures]. Moscow, 1980, pp. 26—42.
  3. Bambura A.N. K otsenke prochnosti zhelezobetonnykh konstruktsiy na osnove deformatsionnogo podkhoda i real’nykh diagramm deformirovaniya betona i armatury [Estimating the Durability of Reinforced Concrete Structures Basing on Deformational Approach and Real Diagrams of Concrete and Reinforcement]. Beton na rubezhe tret’ego tysyacheletiya: Materialy 1-y Vserossiyskoy konferentsii po problemam betona i zhelezobetona: v 3 kn. [Concrete at the Turn of the Third Millennium: Works of the 1st Russian Conference on the Problems of Concrete and Reinforced Concrete: book 3]. Moscow, MI Publ., 2001, vol. 2, pp. 750—757.
  4. Davydenko A.I., Bambura A.N., Belyaeva S.Yu., Prisyazhnyuk N.N. K raschetu prochnosti secheniy, naklonnykh k prodol’noy osi elementa s ispol’zovaniem polnoy programmy deformirovaniya betona [Estimating Cross Section Durability Oblique to Long Axis of the Element Using Overall Program of Concrete Deformation]. Zb. nauk. prats’ f³zmekh. ³n-tu ³m. G.V. Karpenka NAN Ukra¿ni “Mekhan³ka ³ f³zika ruynuvannya bud³vel’nikh mater³al³v ta konstrukts³y” [Collection of Scientific Papers of the G.V. Karpenko Physical & Mechanical Institute, NASU “Mechanics and Physics of Construction Materials and Structure Destruction]. Lv³v, Kamenyar Publ., 2007, no. 7, pp. 209—216.
  5. V.S. Dorofeev, V.M. Karpyuk, F.R. Karpyuk, O.M. Krantovska, N.M. Yaroshevich Vdoskonaleniy deformats³yniy metod rozrakhunku m³tsnost³ priopornikh d³lyanok neperearmovanikh prog³nnikh zal³zobetonnikh konstrukts³y [Improved Deformation Method of Calculating Strength of Support Areas in not Overreinforced Spanned Reinforced Concrete Structures]. M³zhv³domchiy naukovo-tekhn. zb. nauk. prats’ (bud³vnitstvo) Derzh. nauk. dosl. ³n-t bud. kon-ts³y M³n-va reg³on. rozv. ta bud-va Ukra¿ni [Interdepartmental scientific and technical collection of sc. papers (construction), State scientific research institute of building structures, Ministry of regional development and construction of Ukraine]. Kiev, ND²BK Publ., 2008, no. 70, pp. 103—116.
  6. Dorofeev V.S., Karpyuk V.M., Karp’yuk F.R., Yaroshevich N.M. Deformats³yniy metod rozrakhunku m³tsnost³ priopornikh d³lyanok zal³zobetonnikh konstrukts³y [Deformation Method of Calculating Strength of Support Areas in Reinforced Concrete Structures]. V³snik Odes’ko¿ derzhavno¿ akadem³¿ bud³vnitstva ta arkh³tekturi [Proceedings of Odessa State Academy of Civil Engineering and Architecture]. Odessa, LLC “Zovnishreklamservice” Publ., 2008, no. 31, pp. 141—150.
  7. Doroshkevich L.O., Demchina B.G., Maksimovich S.B., Maksimovich B.Yu. Propozits³¿ do rozrakhunku m³tsnost³ pokhilikh perer³z³v zginal’nikh zal³zobetonnikh element³v (do rozd³lu 4.11.2. DBN V. 2.6.) [Proposals for Strength Calculation of Inclined Shears in Bending Reinforced Concrete Elements (to section 4.11.2. DBN Â.2.6.)]. M³zhv³domchiy naukovo-tekhn. zb. nauk. prats’ Derzh. nauk. dosl. ³n-t bud. kon-ts³y [Interdepartmental Scientific and Technical Collection of Sc. Papers, State Scientific Research Institute of Building Structures]. Kiev, ND²BK Publ., 2007, no. 67, pp. 601—612.
  8. Doroshkevich L.A., Demchina B.G., Maksimovich S.B., Maksimovich B.Yu. Nestandartnyy metod rascheta poperechnoy armatury zhelezobetonnykh izgibaemykh elementov [Non-standard Method of Calculating Transverse Reinforcement of Reinforced Concrete Elements at Bending]. Problemy sovremennogo betona i zhelezobetona: sbornik nauchnykh trudov [Problems of Contemporary Concrete and Reinforced Concrete: Collection of sc. papers]. Minsk, NP OOO “Strikon” Publ., 2007, pp. 164—177.
  9. Zalesov A.S., Klimov Yu.A. Prochnost’ zhelezobetonnykh konstruktsiy pri deystvii poperechnykh sil [Strength of Reinforced Concrete Structures under the Impact of Transverse Forces]. Kiev, Bud³vel’nik Publ., 1989, 105 p.
  10. Klovanich S.F. Mekhanika zhelezobetona v raschetakh konstruktsiy [Method of finite Elements in Mechanics of Reinforced Concrete]. Bud³vel’n³ konstrukts³¿: Zb. nauk. prats’ [Building Structures: Collection of Research Works]. Kiev, ND²BK Publ., 2000, no. 52, pp. 107—115.

Download

THE STRENGTH OF REINFORCED CONCRETE BEAM ELEMENTS UNDER CYCLIC ALTERNATING LOADING AND LOW CYCLE LOAD OF CONSTANT SIGN

Vestnik MGSU 9/2015
  • Semina Yuliya Anatol'evna - Odessa State Academy of Civil Engineering and Architecture (OGASA) postgraduate student, Department of Strength of Materials, Odessa State Academy of Civil Engineering and Architecture (OGASA), 4 Didrikhsona Str., Odessa, 65045, Ukraine; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 36-50

The behavior of reinforced concrete elements under some types of cyclic loads is described in the paper. The main aim of the investigations is research of the stress-strain state and strength of the inclined sections of reinforced concrete beam elements in conditions of systemic impact of constructive factors and the factor of external influence. To spotlight the problem of cyclic loadings three series of tests were conducted by the author. Firstly, the analysis of the tests showed that especially cyclic alternating loading reduces the bearing capacity of reinforced concrete beams and their crack resistance by 20 % due to the fatigue of concrete and reinforcement. Thus the change of load sign creates serious changes of stress-strain state of reinforced concrete beam elements. Low cycle loads of constant sign effect the behavior of the constructions not so adversely. Secondly, based on the experimental data mathematical models of elements’ strength were obtained. These models allow evaluating the impact of each factor on the output parameter not only separately, but also in interaction with each other. Furthermore, the material spotlighted by the author describes stress-strain state of the investigated elements, cracking mechanism, changes of deflection values, the influence of mode cyclic loading during the tests. Since the data on the subject are useful and important to building practice, the ultimate aim of the tests will be working out for improvement of nonlinear calculation models of span reinforced concrete constructions taking into account the impact of these loads, and also there will be the development of engineering calculation techniques of their strength, crack resistance and deformability.

DOI: 10.22227/1997-0935.2015.9.36-50

References
  1. Babich E.M. Vliyanie dlitel'nykh i malotsiklovykh nagruzok na mekhanicheskie svoystva betonov i rabotu zhelezobetonnykh elementov [Influence of Long-Term and Low-Cycle Loads on the Mechanical Properties of Concrete and on the Work of Reinforced Concrete Elements]. Rovno, 1995, 386 p. (In Ukrainian)
  2. Albu E.I., Kitsak A.K., Semina Yu.A., Gaydarzhi A.P., Grebenyuk A.V., Sashin V.O., Karpyuk V.M. Metodika eksperimental'nykh issledovaniy napryazhenno-deformirovannogo sostoyaniya priopornykh uchastkov zhelezobetonnykh balok pri malotsiklovom nagruzhenii [Technique of Experimental Studies of Stress-Strain State of Reinforced Concrete Beams under Low-Cycle Loading in the Supporting Areas]. Stroitel'stvo — kak faktor formirovaniya komfortnoy sredy zhiznedeyatel'nosti: sbornik materialov V Respublikanskoy nauchno-tekhnicheskoy konferentsii (28 noyabrya 2013 g.) [Construction as a Factor of Comfortable Living Environment Formation: Collection of the Materials of the 5th Republican Scientific and Technical Conference]. Bendery, 2014. Рр. 3—10. (In Russian)
  3. Zalesov A.S., Klimov Yu.A. Prochnost' zhelezobetonnykh konstruktsiy pri deystvii poperechnykh sil [The Strength of Reinforced Concrete Structures under the Action of Shear Forces]. Kiev, Budіvel'nik Publ., 1989, 104 p. (In Russian)
  4. Korneychuk A.I., Masyuk G.Kh. Eksperimental'nye issledovaniya nesushchey sposobnosti naklonnykh secheniy izgibaemykh zhelezobetonnykh elementov pri deystvii malotsiklovykh znakoperemennykh nagruzok [Experimental Study of the Bearing Capacity of Inclined Cross Sections of Bending Reinforced Concrete Elements under the Action of Low-Cycle Alternating Loads]. Resursoekonomnye materialy, konstruktsii zdaniya i sooruzheniya : sbornik nauchnykh trudov [Resource Saving Materials, Buildings Constructions and Structures: Collection of Scientific Papers]. Rovno, 2008, no. 16, part 2, pp. 217—222. (In Ukrainian)
  5. Dorofeev V.S., Karpyuk V.M., Yaroshevich N.M. Prochnost' i treshchinostoykost' izgibaemykh zhelezobetonnykh elementov [Strength and Crack Resistance of Bending Reinforced Concrete Elements]. Vestnik OGASA [Bulletin of the Odessa State Academy of Building and Architecture]. 2008, no. 28, pp. 149—158. (In Russian)
  6. Karpyuk V.M. Raschetnye modeli silovogo soprotivleniya progonnykh zhelezobetonnykh konstruktsiy v obshchem sluchae napryazhennogo sostoyaniya [Calculation Models of Power Resistance of Girder Reinforced Concrete Constructions in General Case of Stress State]. Odessa, OGASA Publ., 2014, 352 p. (In Ukrainian)
  7. Gomon P.S. Rabota zhelezobetonnykh balok tavrovogo secheniya pri deystvii povtornogo nagruzheniya [Work of T-section Reinforced Concrete Beams under Repeated Loading]. Novye materialy, oborudovanie i tekhnologii v promyshlennosti : materialy Mezhdunarodnoy konferentsii molodykh uchenykh [New Materials, Equipment and Technologies in the Industry: Proceedings of the International Conference of Young Scientists]. Mogilev, 2009, p. 90. (In Ukrainian)
  8. Zarechanskiy O.O. Issledovanie szhato-izognutykh elementov pri povtornom deystvii poperechnoy sily vysokikh urovney [Research of Compressed-Bent Elements by Repeated Transverse Force of High Levels]. Resursoekonomnye materialy, konstruktsii zdaniya i sooruzheniya : sbornik nauchnykh trudov [Resource Saving Materials, Buildings Constructions and Structures: Collection of Scientific Papers]. Rovno, 2005, no. 13, pp. 129—135. (In Ukrainian)
  9. Zinchuk N.S. Eksperimental'nye issledovaniya napryazhenno-deformirovannogo sostoyaniya zhelezobetonnykh izgibaemykh elementov pri odnokratnom i malotsiklovom nagruzheniyakh v usloviyakh povyshennykh temperatur [Experimental Study of Stress-Strain State of Reinforced Concrete Bent Elements under the Single and Low-Cycle Loading at Elevated Temperatures]. Resursoekonomnye materialy, konstruktsii zdaniya i sooruzheniya : sbornik nauchnykh trudov [Resource Saving Materials, Buildings Constructions and Structures: Collection of Scientific Papers]. Rovno, 2004, no. 11, pp. 164—166. (In Ukrainian)
  10. Karavan V.V., Masyuk G.Kh. Rezul'taty eksperimental'nykh issledovaniy treshchinostoykosti i deformativnosti izgibaemykh zhelezobetonnykh elementov pri vozdeystvii malotsiklovykh znakoperemennykh nagruzok [The Experimental Results of Crack Resistance and Deformability Bending Reinforced Concrete Elements When Exposed to Low-Cycle Alternating Loads]. Stalezhelezobetonnye konstruktsii. Issledovanie, proektirovanie, stroitel'stvo, ekspluatatsiya : sbornik nauchnykh statey [Composite Structures. Research, Design, Construction, Operation: Collection of Scientific Papers]. Krivoy Rog, 2002, no. 5, pp. 168—172. (In Ukrainian)
  11. Grigorchuk A.B., Masyuk G.Kh. Prochnost' i deformativnost' zhelezobetonnykh elementov, kotorye podvergayutsya vozdeystviyu znakoperemennogo nagruzheniya [Strength and Deformability of Reinforced Concrete Elements That are Exposed to Action of Alternating Loading]. Sbornik materialov konferentsii Ch. 1. Stroitel'stvo [Collection of Conference Materials. Part 1 Building]. L'vov, 2001, pp. 29—34. (In Ukrainian)
  12. Karpenko N.I., Karpenko S.N. O postroenii bolee sovershennoy modeli deformirovaniya zhelezobetona s treshchinami pri ploskom napryazhennom sostoyanii [On Construction of a More Perfect Model of Deformation of Cracked Reinforced Concrete under Plane Stress State]. Beton i zhelezobeton — puti razvitiya : materialy ІІ Vserossiyskoy Mezhdunarodnoy konferentsii po betonu i zhelezobetonu (05.09—09.09.2002) [Concrete and Reinforced Concrete — Ways of Development: Materials of the 2nd All-Russian International Conference on Concrete and Reinforced Concrete]. Moscow, 2005, pp. 431—444. (In Russian)
  13. Zalesov A.S., Mukhamediev T.A., Chistyakov E.A. Raschet prochnosti zhelezobetonnykh konstruktsiy pri razlichnykh silovykh vozdeystviyakh po novym normativnym dokumentam [Calculation of the Strength of Concrete Structures under Different Force Actions on New Regulations]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2002, no. 3, pp. 10—13. (In Russian)
  14. Babich E.M., Gomon P.S., Filipchuk S.V. Rabota i raschet nesushchey sposobnosti izgibaemykh zhelezobetonnykh elementov tavrovogo profilya pri vozdeystvii povtornykh nagruzok [Work and Calculation of the Bearing Capacity of Bending T-Sections Reinforced Concrete Elements under the Influence of Repeated Loads]. Rovno, NUVGP Publ., 2012, 108 p. (In Ukrainian)
  15. Masyuk G.Kh., Korneychuk A.I. Napryazhenno-deformirovannoe sostoyanie naklonnykh secheniy izgibaemykh zhelezobetonnykh elementov, kotorye podvergayutsya vozdeystviyu malotsiklovykh znakoperemennykh nagruzok [Stress-strain State of Incline Sections of Bending Concrete Elements That are Exposed to the Action of Low-Cycle Alternating Loads]. Resursoekonomnye materialy, konstruktsii zdaniya i sooruzheniya : sbornik nauchnykh trudov [Resource Saving Materials, Buildings Constructions and Structures: Collection of Scientific Papers]. Rovno, NUVGP Publ., 2008, no. 17, pp. 204—211. (In Ukrainian)
  16. Mel'nik S.V., Borisyuk O.P., Kononchuk O.P., Petrishin V.M. Issledovanie raboty usilennykh zhelezobetonnykh balok pri deystvii malotsiklovykh nagruzheniy [Research of Reinforced Concrete Beams Work under the Action of Low-Cycle Loading]. Resursoekonomnye materialy, konstruktsii zdaniya i sooruzheniya : sbornik nauchnykh trudov [Resource Saving Materials, Buildings Constructions and Structures: Collection of Scientific Papers]. Rovno, 2008, no. 17, pp. 404—410. (In Ukrainian)
  17. Koval'chik Ya.I., Koval' P.M. Issledovanie treshchinostoykosti predvaritel'no napryazhennykh zhelezobetonnykh balok pri vozdeystvii malotsiklovykh nagruzheniy [Investigation of Crack Resistance of Prestressed Concrete Beams under the Influence of Low-Cycle Loading]. Nauchno-prikladnye aspekty avtomobil'noy i transportno-dorozhnoy otrasley : Nauchnye zametki [Scientific and Practical Aspects of the Automobile and Transport Industries: Scientific Notes]. Lutsk, 2014, no. 45, pp. 282—287. (In Ukrainian)
  18. Dovbenko V.S. Issledovanie raboty zhelezobetonnykh balok, usilennykh polimernoy kompozitsiey pri vozdeystvii malotsiklovykh nagruzok [Research of Reinforced Concrete Beams Work Reinforced with Polymer Composition When Exposed to Low-Cycle Loads]. Resursoekonomnye materialy, konstruktsii zdaniya i sooruzheniya : sbornik nauchnykh trudov [Resource Saving Materials, Buildings Constructions and Structures: Collection of Scientific Papers]. Rovno, 2011, no. 22, pp. 787—794. (In Ukrainian)
  19. Babich V.E. Osobennosti raboty nerazreznykh zhelezobetonnykh balok pri povtornykh nagruzkakh [Features of Continuous Reinforced Concrete Beams Work under the Repeated Loads]. Stroitel'nye konstruktsii : sbornik nauchnykh trudov [Building Structures: Collection of Scientific Works]. Kiev, 2003, no. 58, pp. 8—13. (In Ukrainian)
  20. Drobyshinets S.Ya., Babich E.M. Rabota stalefibrobetonnykh i stalefibrozhelezobetonnykh balok pri odnokratnom i povtornom nagruzheniyakh [Work of Fiber Concrete and Fiber Reinforced Concrete Beams under the Action of Single and Repeated Loadings]. Stalezhelezobetonnye konstruktsii. Issledovanie, proektirovanie, stroitel'stvo, ekspluatatsiya : sbornik nauchnykh statey [Composite Structures. Research, Design, Construction, Operation: Collection of Scientific Papers]. Krivoy Rog, 2004, no. 6, pp. 65—71. (In Ukrainian)
  21. Valovoy M.A. Prochnost', deformativnost' i treshchinostoykost' zhelezobetonnykh balok pri vozdeystvii povtornykh nagruzok [The Strength, Crack Resistance and Deformability of Concrete Beams under the Influence of Repeated Loads]. Stalezhelezobetonnye konstruktsii. Issledovanie, proektirovanie, stroitel'stvo, ekspluatatsiya : sbornik nauchnykh statey [Composite Structures. Research, Design, Construction, Operation: Collection of Scientific Papers]. Krivoy Rog, 2008, no. 8, pp. 45—48. (In Ukrainian)

Download

PREDICTION OF MAXIMUM CREEP STRAIN OF HIGH PERFORMANCE STEEL FIBER REINFORCED CONCRETE

Vestnik MGSU 12/2012
  • Mishina Alexandra Vasil'evna - Research Institute of Building Physics of the Russian Academy of Architecture and Construction Sciences (NIISF RAACS) postgraduate student, Research Institute of Building Physics of the Russian Academy of Architecture and Construction Sciences (NIISF RAACS), 21 Lokomotivnyy proezd, Moscow, 127238, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Bezgodov Igor' Mikhaylovich - Moscow State University of Civil Engineering (MSUCE) Researcher, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Andrianov Aleksey Aleksandrovich - Research Institute of Building Physics of the Russian Academy of Architecture and Construction Sciences (NIISF RAACS) Candidate of Technical Sciences, Senior Researcher; +7 (495) 482-40-18, Research Institute of Building Physics of the Russian Academy of Architecture and Construction Sciences (NIISF RAACS), 21 Lokomotivnyy proezd, Moscow, 127238, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 66 - 70

The strongest research potential is demonstrated by the areas of application of high performance steel fiber reinforced concrete (HPSFRC). The research of its rheological characteristics is very important for the purposes of understanding its behaviour. This article is an overview of an experimental study of UHSSFRC. The study was carried out in the form of lasting creep tests of HPSFRC prism specimen, loaded by stresses of varied intensity. The loading was performed at different ages: 7, 14, 28 and 90 days after concreting. The stress intensity was 0.3 and 0.6 Rb; it was identified on the basis of short-term crush tests of similar prism-shaped specimen, performed on the same day. As a result, values of ultimate creep strains and ultimate specific creep of HPSFRC were identified. The data was used to construct an experimental diagramme of the ultimate specific creep on the basis of the HPSFRC loading age if exposed to various stresses. The research has resulted in the identification of a theoretical relationship that may serve as the basis for the high-precision projection of the pattern of changes in the ultimate specific creep of HPSFRC, depending on the age of loading and the stress intensity.

DOI: 10.22227/1997-0935.2012.12.66 - 70

References
  1. Beddar M. Fiber Reinforced Concrete: Past, Present and Future. Scientific works of the 2nd International conference on concrete and reinforced concrete. Moscow, 2005, vol. 3. pp. 228—234.
  2. Gorb A.M., Voylokov I.A. Fibrobeton – istoriya voprosa, normativnaya baza, problemy i resheniya [Fibre-reinforced Concrete – Background, Normative Base (Problems and Solutions)] ALITInform mezhdunarodnoe analiticheskoe obozrenie [ALITInform International Analytical Review]. 2009, no. 2, pp. 34—43.
  3. Almansour H., Lounus Z. Structural Performance of Precast Pre-stressed Bridge Girders Built with Ultra High Performance Concrete. Institute for Research in Construction. The Second International Symposium on Ultra High Performance Concrete. March 05-07, 2008. Kassel, Germany, pp. 822—830.
  4. Arafa M., Shihada S., Karmout M. Mechanical Properties of Ultra High Performance Concrete Produced in the Gaza Strip. Asian Journal of Materials Science, 2010, 2(1), pp. 1—12.
  5. Schmidt M., Fehling E. Ultra-high-performance Concrete: Research, Development and Application in Europe. ACI Special Publication, 2005, vol. 228, pp. 51—78.
  6. Mishina A.V., Andrianov A.A. Rabota vysokoprochnogo stalefi brobetona pri kratkovremennom zagruzhenii [Behaviour of High Strength Steel Fiber Concrete Exposed to Short-term Loading]. Fundamental’nye issledovaniya RAASN po nauchnomu obespecheniyu razvitiya arkhitektury, gradostroitel’stva i stroitel’noy otrasli Rossiyskoy Federatsii v 2011 g. [Fundamental Researches of RAACS in Architecture, Town Planning and Construction Industry of the Russian Federation in 2011]. Moscow, MGSU Publ, 2012, vol. 2, pp. 76—78.
  7. Pukharenko Yu.V., Golubev V.Yu. Vysokoprochnyy stalefi brobeton [High Strength Steel Fiber Reinforced Concrete] Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2007, no. 9, pp. 40—41.
  8. Mishina A.V., Chilin I.A., Andrianov A.A. Fiziko-tekhnicheskie svoystva sverkhvysokoprochnogo stalefibrobetona [Physical Technical Properties of High Performance Steel Fiber Reinforced Concrete] Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 3, pp. 159—165.
  9. GOST 24544—81. Betony. Metody opredeleniya deformatsiy usadki i polzuchesti [State Standard 24544—81. Concretes. Methods of Identification of Creep and Shrinkage Strain].
  10. Karpenko N.I., Romkin D.S. Sovremennye metody opredeleniya deformatsiy polzuchesti novykh vysokoprochnykh betonov [Advanced Methods of identification of Deformations of Creep of Highperformance Concretes]. Fundamental’nye issledovaniya RAASN po nauchnomu obespecheniyu razvitiya arkhitektury, gradostroitel’stva i stroitel’noy otrasli Rossiyskoy Federatsii v 2011 g. [Fundamental Researches of RAACS in Architecture, Town Planning and Construction Industry of the Russian Federation in 2011]. Moscow, MGSU Publ, 2012, vol. 2, pp. 83—87.
  11. Romkin D.S. Vliyanie vozrasta vysokoprochnogo betona na ego fiziko-mekhanicheskie I reologicheskie svoystva [Infl uence of Age of High-strength Concrete on its Physical, Mechanical and Rheological Properties]. Moscow, 2010, 12 p.

Download

Constructive solutions for beamless capitalless floors with prestressed reinforcement

Vestnik MGSU 6/2014
  • Bardysheva Yuliya Anatol'evna - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Architectural and Construction Design, Mytishchi Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospect, Mytishchi, 141006, Moscow Region, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kuznetsov Vitaliy Sergeevich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Senior Research Worker, Department of Architectural and Construction Design, Mytishchi Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospect, Mytishchi, 141006, Moscow Region, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Talyzova Yuliya Aleksandrovna - Moscow State University of Civil Engineering (MGSU) Assistant, Department of Architectural and Structural Design, Mytishchi Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospect, Mytishchi, Moscow Region, 141006, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 44-51

In the article the authors present advanced constructions of prestressed reinforced concrete flat ceiling, where high-strength ropes in elastic shell are used as stressed reinforcement. The novelty of the solution lays in diagonal arrangement of hard valves and use of high-strength ropes in a flexible shell of "Monostrand" type. This type of prestress, in our opinion, is the most acceptable from technical point of view for selective reinforcement of separate tense rods or cables. The use of pre-stressed reinforcement in the form of individual rods or cables increases the rigidity and crack resistance of concrete beamless slabs. The use of high-strength ropes in the monostrand-type shell makes it possible to prestress in frames of single cell plate or floor in general and to reduce labour input for stressing armature. The paper presents original solution with diagonal position of the valve. The authors suggest the use of prestressed diagonal valves as in all cells of the floor with the cells of the same or only slightly different size and in separate cells of the floor (for roofs with different cells). The diagonal location of stressed reinforcement proposed in the work is an efficient solution for extending the range of dimensions and loads size.

DOI: 10.22227/1997-0935.2014.6.44-51

References
  1. Chernygov E.A. Issledovanie effektivnosti primeneniya tekhnologii natyazheniya armatury na beton bez stsepleniya [Efficiency Study of the Use of Post-Tensioning Technology without Bond]. Molodye uchennye v transportnoy nauke: nauchnye trudy [Young Scientists in Transport Science: Scientific Works]. Moscow, OAO TsNIIS Publ., 2005, pp. 87—95.
  2. Citnikov S.L., Miryushenko E.F. Sposob izgotovleniya predvaritel'no napryazhennykh zhelezobetonnykh konstruktsiy i monostrend [Production Method of Prestressed Reinforced Concrete Structures and Monostrand]. Patent RF № 2427686. № 2009132979/03; zayavl. 02.09.2009; opubl. 27.08.2011, Byul. № 24 [Russian Patent no. 427686. No. 2009132979/03; subm. 02.09.2009; published 27.08.2011, Bull. No. 24]. 8 p.
  3. Zaytsev Yu.V. Modelirovanie deformatsiy i prochnosti betona metodami mekhaniki razrusheniy [Concrete Deformation and Strength Modeling by Means of Fracture Mechanics]. Moscow, Stroyizdat Publ., 1982, 196 p.
  4. Gagin A.A. Osobennosti bezbalochnykh bol'sheproletnykh monolitnykh zhelezobetonnykh perekrytiy [Features of Beamless Longspan Monolithic Reinforced Concrete Slabs]. Vestnik RUDN. Seriya: Inzhenernye issledovaniya [Proceedings of Peoples’ Friendship University of Russia. Series: Engineering Investigations]. 2010, no. 2, pp. 25—28.
  5. Paillé JM. Calcul des structures en béton. Guide d'application. 2 ed. AFNOR, 2013, 716 p.
  6. Freyssinet E. Naissance du béton précontraint et vues d'avenir. Travaux, 1954. no. 236, 463 p.
  7. Martynov A.A. Sposob natyazheniya kanatnoy armatury pri vozvedenii zdaniy po sisteme ims [Way of Wire Rope Tensioning in the Process of Construction Using Industrial Erecting System]. Patent RF № 2264506. № 2002117939/03; zayavl. 05.07.2002; opubl. 20.11.2005 Byul. № 32 [Russian Patent no. 2264506. No. 2002117939/03; subm. 05.07.2002; published 20.11.2005, Bull. no. 32]. 6 p.
  8. Dzyuba I.S., Vatin N.I., Kuznetsov V.D. Monolitnoe bol'sheproletnoe rebristoe perekrytie s postnapryazheniem [Monolithic Longspan Ribbed Floor with Post-stress]. Inzhenerno-stroitel'nyy zhurnal [Engineering Construction Journal]. 2008, no. 1, pp. 5—12.
  9. Likhov Z.R. Zhelezobetonnye stropil'nye balki s konsol'nymi vystupami vdol' proleta [Reinforced Concrete Sloping Beams with Outriggers Along Span]. Razvitie teorii i praktiki zhelezobetonnykh konstruktsiy: sbornik nauchnykh trudov [Development of Theory and Practice of Reinforced Concrete Structures: Collection of Scientific Works]. Rostov on Don, RGSU Publ., SevkavNIPIagroprom Publ., 2003, pp. 112—114.
  10. Ryazantsev S.P., Fedorov Yu.L. Monolitnoe zhelezobetonnoe bezrigel'noe perekrytie [Monolithic Reinforced Concrete Girderless Floor Construction]. Novye idei novogo veka: materialy 10-go mezhdunarodnogo foruma IAS TOGU [New Materials of the New Century: Materials of the 10th International Forum of Pacific National University]. Khabarovsk, TOGU Publ., 2010, vol. II, pp. 90—94.
  11. Mailyan D.R., Mailyan R.L., Osipov M.V. Zhelezobetonnye balki s predvaritel'nym napryazheniem na otdel'nykh uchastkakh [Reinforced Concrete Beams with Prestress of Separate Areas]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2002, no. 2, pp. 18—20.
  12. Durability of Post-tensioning Tendons. Fib Bulletin no. 33, Lausanne, 2005, 76 p.
  13. Kritsin S.T., Markov N.A., Sharipov R.Sh. Sposob natyazheniya armaturnogo elementa s ankernym ustroystvom [Way of Reinforcing Element Tensioning with Anchor Arrangement]. Patent RF № 2037041. № 5038642/33; zayavl. 24.02.1992; opubl. 09.06.1995 [Russian Patent no. 2037041. No. 5038642/33; subm. 24.02.1992; publ. 09.06.1995. Available at: http://www.freepatent.ru/patents/2037041. Date of access: 30.03.2014.
  14. Walsh K.Q., Kurama Y.C. Behavior of Unbonded Post-tensioning Monostrand Anchorage Systems under Monotonic Tensile Loading. PCI Journal. Precast / Prestressed Concrete Institute, 2010, vol. 55, no. 1, pp. 97—117.
  15. Kishinevskaya E.V., Vatin N.I., Kuznetsov V.D. Usilenie stroitel'nykh konstruktsiy s ispol'zovaniem postnapryazhennogo zhelezobetona [Reinforcement of Building Structiures Using Poststressed Tecinforced Concrete]. Inzhenerno-stroitel'nyy zhurnal [Engineering and Construction Journal]. 2009, no. 3, pp. 29—32.

Download

Strength and stability analysis of load-bearing structures of a high-rise building with account for actual positions of reinforced concrete structural members

Vestnik MGSU 4/2015
  • Belostotskiy Aleksandr Mikhaylovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Moscow State University of Civil Engineering (MGSU), ; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Akimov Pavel Alekseevich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, chair, Department of Computer Sciences and Applied Mathematics, Corresponding Member of Russian Academy of Architecture and Construction Sciences, chief research worker, Research and Educational Center of Computational Simulation of Unique Buildings, Structures and Complexes, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-59-94, +7 (499) 929-50-17; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Petryashev Nikolay Olegovich - Moscow State University of Civil Engineering (MGSU) engineer, Research and Educational Center of Computational Simulation of Unique Buildings, Structures and Complexes, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-59-94, +7 (499) 929-50-17; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Petryashev Sergey Olegovich - Moscow State University of Civil Engineering (MGSU) engineer, Research and Educational Center of Computational Simulation of Unique Buildings, Structures and Complexes, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-59-94, +7 (499) 929-50-17; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Negrozov Oleg Aleksandrovich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Computer Sciences and Applied Mathematics, engineer, Research and Educational Center of Computational Simulation of Unique Buildings, Structures and Complexes, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-59-94, +7 (499) 929-50-17; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 50-68

The given paper is devoted to strength and stability analysis of load-bearing structures of a high-rise (54-storey) building with allowance for actual positions of reinforced concrete structural members (columns and walls). Finite element method (FEM) is used for structural analysis. The authors present formulations of problems, governing equations, information about basic three-dimensional finite element models (so-called “design” (ideal) model, the first “actual” model (taking into account the deviations of positions of columns from the project) and the second “actual” model (taking into account the deviations of positions of walls from the project)) of the coupled system “high-rise building - foundation” within ANSYS Mechanical software and their verification, numerical approach to structural analysis and corresponding solvers. Finite element models include mainly 4-node structural shell elements (suitable for analyzing foundation slabs, floor slabs and load-bearing walls) and three-dimensional 2-node beam elements (suitable for analyzing beams and columns), special spring-damper elements and multipoint constraint elements. Detailed finite element mesh on the bottom foundation slab is agreed with the location of piles. The advanced model of Prof. Yu.K. Zaretsky is used for approximation of soil behavior. Construction sequence and various types of nonlinearities are taken into account. The results of modal analysis, static and dynamic analysis with various load combinations (gravity load, facade load, dead (constant) loads, temporary loads, wind load, snow load, crown load etc.) are considered, the results of the regulatory assessment of the strength of structures (obtained with the use of corresponding software in accordance with design codes of the Russian Federation) are under consideration as well. The corresponding displacements, stresses, natural vibration frequencies can be used for research and development of the correct monitoring method of the foundation and load-bearing structures of a high-rise building.

DOI: 10.22227/1997-0935.2015.4.50-68

References
  1. Belostotskiy A.M. Matematicheskie modeli v osnove i sostave sistem monitoringa nesushchikh konstruktsiy vysotnykh zdaniy. Ot profanatsii k realizatsii [Mathematical Models within Monitoring Systems of High-Rise Buildings. From Profanation to Realization]. Vysotnye zdaniya [High-Rise Buildings]. 2014, no. 4, pp. 102—107. (In Russian)
  2. Belostotskiy A.M. Opyt raschetnogo obosnovaniya sostoyaniya unikal'nykh (vysotnykh i bol'sheproletnykh) zdaniy i sooruzheniy [Experience of Numerical Analysis of Unique (High-Rise and Long Span) Buildings and Structures]. Vysotnye zdaniya [High-Rise Buildings]. 2014, no. 2, pp. 106—109. (In Russian)
  3. Belostotskiy A.M. Sovremennaya metodologiya chislennogo modelirovaniya nagruzok i vozdeystviy, napryazhenno-deformirovannogo sostoyaniya i ustoychivosti vysotnykh zdaniy i kompleksov [Contemporary Approach to Numerical Simulation of Loads and Actions, Stress-Strain State and Stability of High-Rise Buildings and Complexes]. Vysotnye zdaniya [High-Rise Buildings]. 2014, no. 1, pp. 94—97. (In Russian)
  4. Belostotskiy A.M. Chislennoe modelirovanie staticheskogo i dinamicheskogo napryazhenno-deformirovannogo sostoyaniya prostranstvennykh sistem «sooruzhenie — osnovanie — vodokhranilishche» s uchetom nelineynykh effektov otkrytiya — zakrytiya shvov i makrotreshchin : dissertatsiya doktora tekhnicheskikh nauk [Numerical Modeling of Static and Dynamic Stress-Strain State of Three-Dimensional Systems “Construction — Foundation — Reservoir” with an Allowance for Nonlinear Effects of Open/Close Joints and Macrofractures. Doctor of Technical Sciences Thesis]. Moscow, MGUP Publ., 1998, 367 p. (In Russian)
  5. Belostotskiy A.M., Akimov P.A., Pavlov A.S., Kaytukov T.B., Afanas'eva I.N. O razrabotke, issledovanii i verifikatsii korrektnykh chislennykh metodov resheniya nelineynykh zadach deformirovaniya, ustoychivosti i zakriticheskogo povedeniya tonko-stennykh obolochechno-sterzhnevykh konstruktsiy [On the Development, Research and Verification of Correct Numerical Methods of Nonlinear Strength, Stability and Post-Critical Analysis of Thin-Walled Shell-Beam Structures]. Stroitel'naya mekhanika i raschet sooruzheniy [Structural Mechanics and Calculation of Structures]. 2014, no. 5 (256), pp. 7—13. (In Russian)
  6. Belostotskiy A.M., Sidorov V.N., Akimov P.A., Kashevarova G.G. Matematicheskoe modelirovanie tekhnogennoy bezopasnosti otvetstvennykh stroitel'nykh ob
  7. Belostotskiy A.M., Pen'kovoy S.B., Shcherbina S.V., Kaytukov T.B., Akimov P.A. Razrabotka i verifikatsiya metodiki chislennogo modelirovaniya NDS, prochnosti i ustoychivosti mnogoetazhnykh panel'nykh zdaniy [Development and Verification of Numerical Approach to Modeling of Stress-Strain State, Strength and Stability of Multistory Panel Buildings]. Stroitel'naya mekhanika i raschet sooruzheniy [Structural Mechanics and Calculation of Structures]. 2014, no. 6 (257), pp. 24—30. (In Russian)
  8. Senin N.I., Akimov P.A. Nekotorye matematicheskie osnovy rascheta prostranstvennykh nesushchikh sistem mnogoetazhnykh zdaniy v lineynoy postanovke v ramkakh diskretno-kontinual'noy modeli [Several Mathematical Foundations of Linear Analysis of Three-Dimensional Load-Bearing Systems of Multistory Buildings within Discrete-Continual Model]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 2, vol. 1, pp. 44—50. (In Russian)
  9. Akimov P.A. Correct Discrete-Continual Finite Element Method of Structural Analysis Based on Precise Analytical Solutions of Resulting Multipoint Boundary Problems for Systems of Ordinary Differential Equations. Applied Mechanics and Materials. 2012, vols. 204—208, pp. 4502—4505. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMM.204-208.4502.
  10. Akimov P.A., Belostosky A.M., Moz-galeva M.L., Mojtaba Aslami, Negrozov O.A. Correct Multilevel Discrete-Continual Finite Element Method of Structural Analysis. Advanced Materials Research. 2014, vol. 1040, pp. 664—669.
  11. Akimov P.A., Mozgaleva M.L. Method of Extended Domain and General Principles of Mesh Approximation for Boundary Problems of Structural Analysis. Applied Mechanics and Materials. 2014, vols. 580—583, pp. 2898—2902. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMM.580-583.2898.
  12. Dong J., Bathe K.J. Component Mode Synthesis with Subspace Iterations for Controlled Accuracy of Frequency and Mode Shape Solutions. Computers & Structures. 2014, vol. 139, pp. 28—32. DOI: http://dx.doi.org/10.1016/j.compstruc.2014.03.003.
  13. Jeon H.M., Lee Y., Lee P.S., Bathe K.J. The MITC3+ Shell Element in Geometric Nonlinear Analysis. Computers & Structures. 2015, vol. 146, pp. 91—104. DOI:http://dx.doi.org/10.1016/j.compstruc.2014.09.004.
  14. Kim J., Bathe K.J. Towards a Procedure to Automatically Improve Finite Element Solutions by Interpolation Covers. Computers & Structures. 2014, vol. 131, pp. 81—97. DOI: http://dx.doi.org/10.1016/j.compstruc.2013.09.007.
  15. Sussman T., Bathe K.J. 3D-shell Elements for Structures in Large Strains. Computers & Structures. 2013, vol. 122, pp. 2—12. DOI: http://dx.doi.org/10.1016/j.compstruc.2012.12.018.
  16. Afanas'eva I.N. Adaptivnaya metodika chislennogo modelirovaniya trekhmernykh dinamicheskikh zadach stroitel'noy aerogidrouprugosti : dissertatsiya kandidata tekhnicheskikh nauk [Adaptive Procedure of Numerical Modeling of Three-Dimensional Dynamic Problems of Construction Aerohydroelasticity. Candidate of Technical Sciences Thesis]. Moscow, MGSU Publ., 2014, 200 p. (In Russian)
  17. Kalichava D.K. Adaptivnye dinamicheskie konechnoelementnye modeli v osnove monitoringa nesushchikh konstruktsiy vysotnykh zdaniy : dissertatsiya kandidata tekhnicheskikh nauk [Adaptive Dynamic Finite Element Models as a Base for Monitoring of Load-Bearing Structures of High-rise Buildings. Candidate of Technical Sciences Thesis]. Moscow, MGSU Publ., 2012, 149 p. (In Russian)
  18. Kabantsev O.V., Tamrazyan A.G. Uchet izmeneniy raschetnoy skhemy pri analize raboty konstruktsiy [Structural Analysis with Allowance for Modification of Computational Scheme]. Inzhenerno-stroitel'nyy zhurnal [Magazine of Civil Engineering]. 2014, no. 5 (49), pp. 15—26. (In Russian)
  19. Kabantsev O.V. Verifikatsiya raschetnoy tekhnologii «Montazh» programmnogo kompleksa «SCAD» [Verification of Calculation Technology “Mounting” from Software Complex “SCAD”]. International Journal for Computational Civil and Structural Engineering. 2011, vol. 7, issue 3, pp. 103—109. (In Russian)
  20. Kabantsev O.V. Metod rascheta mnogoetazhnykh zdaniy s uchetom protsessa izmeneniya raschetnoy skhemy pri razlichnykh rezhimakh raboty raboty [Analysis Methods of Multi-storeyed Buildings with the Allowance for Modification of Structural Design under Various Operation Conditions]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 10, pp. 43—51. (In Russian)
  21. Kabantsev O.V., Karlin A.V. Raschet nesushchikh konstruktsiy zdaniy s uchetom istorii vozvedeniya i poetapnogo izmeneniya osnovnykh parametrov raschetnoy modeli [Analysis of Load-Bearing Structures with Allowance for Construction Sequence and Step-by-Step Modification of Basic Parameters of Computing Model]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2012, no. 7, pp. 33—35. (In Russian)
  22. Kabantsev O., Perelmuter A. Modeling Transition in Design Model when Analyzing Specific Behaviors of Structures. Procedia Engineering. 2013, vol. 57, pp. 479—488.
  23. 2 3. Kim H.S., Shin A.K. Column Shortening Analysis with Lumped Construction Sequences. Procedia Engineering. 2011, vol. 14, pp. 1791—1798.
  24. Aul A.A., Belostotskiy A.M., Krakovskiy M.B. Raschet zhelezobetonnykh konstruktsiy pri sovmestnom ispol'zovanii programm ANSYS i «OM SNiP Zhelezobeton» [Analysis of Reinforced Structures with the Use of ANSYS Software and “OM Snip Zhelezobeton” Package]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2011, no. 5, pp. 19—23. (In Russian)
  25. Belokopytova I.A., Kriksunov E.Z., Mikitarenko M.A., Perel'muter M.A. «Arbat» — programma dlya rascheta zhelezobetonnykh stroitel'nykh konstruktsiy [“ARBAT” — Software for Reinforced Building Structures Analysis]. CADmaster. 2001, no. 4 (9), pp. 57—61. (In Russian)
  26. Kukushkin I.S. SCAD Office V.21. Novyy oblik [SCAD Office V.21. New Profile]. CADmaster. 2014, no. 3—4 (76—77), pp. 100—102. (In Russian)
  27. Perel'muter M.A., Chertkov V.V. O komp'yuternom raschete elementov betonnykh i zhelezobetonnykh konstruktsiy [On Computational Analysis of Concrete and Reinforced Concrete Structures]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2014, no. 3, pp. 14—16. (In Russian)
  28. Perel'muter M.A., Popok K.V., Skoruk L.N. Raschet shiriny raskrytiya normal'nykh treshchin po SP 63.13330.2012 [Calculation of the Normal Crack Opening Width for SP 63.13330.2012]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2014, no. 1, pp. 21—22. (In Russian)

Download

Burst strength analysis for a plate of girderless capitelless floor

Vestnik MGSU 10/2014
  • Kremnev Vasiliy Anatol'evich - LLC "InformAviaKoM" Director General, LLC "InformAviaKoM", 2 Pionerskaya str., Korolev, Moscow Region, 141074, Russian Federation; +7 (495) 645-20-62; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kuznetsov Vitaliy Sergeevich - Mytishchi Branch, Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Architectural and Construction Design, Mytishchi Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospect, Mytishchi, Moscow Region, 141006, Russian Federation; +7 (495) 583-07-65; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Talyzova Yulia Aleksandrovna - Mytishchi Branch, Moscow State University of Civil Engineering (MGSU) Assistant Lecturer, Department of Architectural and Construction Design, Mytishchi Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospect, Mytishchi, Moscow Region, 141006, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 34-40

The paper presents calculations of the punching girderless monolithic slab with transverse reinforcement under the action of a concentrated force in accordance with the applicable regulations. The authors specify the circumstances that may limit the use of the certain sizes of spans of beamless floors. The influence of various factors on ensuring the strength of the joints of columns and ceiling is obserced, such as the class of the concrete slab thickness, the presence of transverse reinforcement. In this paper the calculations of the burst strength were performed for girderless slabs of the thickness 20, 21 , 22, 23, 24 and 25 cm of concrete classes B15, B20, B25, B30 and columns of square section with the side b = 30 cm. The cells of 5 × 5, 6 × 6, 7 × 7, 8 × 8, 9 × 9 m were analized. Bending moments were not taken into account. The utmost bursting effort for various classes of concrete slab thickness and the absence or presence of transverse reinforcement were discovered. The limiting uniformly distributed loads for plates with different grid of columns were calculated. It was found out that in case of the size of the cells up to 5 x 5 m inclusively, you can use all the above concrete classes and slab thicknesss. But in case of the cells of 9 x 9 m and more the use of overlap without capitals is problematic because of the impossibility to ensure the burst strength without special design solutions. Some of contemporary ways to expand the use of overlap without capitals are: the use of high-strength concretes, application of stiff reinforcement in the area of joint of stiff reinforcement, fiber reinforcement and the use of prestressed reinforcement.

DOI: 10.22227/1997-0935.2014.10.34-40

References
  1. Pogrebnoy I.O., Kuznetsov V.D. Bezrigel'nyy predvaritel'no napryazhennyy karkas s ploskim perekrytiem [Beamless Prestressed Frame with flat S;ab]. Inzhenerno-stroitel'nyy zhurnal [Civil Engineering Journal]. 2010, no. 3. Pp. 52—55. Available at: http://engstroy.spb.ru/index_2010_03/pogrebnoy_prednapryazheniye.pdf. Date of access: 5.12.2014. (in Russian)
  2. Karpenko N.I. Obshchie modeli mekhaniki zhelezobetona [General Models of Reinforced Concrete Mechanics]. Moscow, Stroyizdat Publ., 1996, 413 p. (in Russian)
  3. Beglov A.D., Sanzharovskiy R.S. Teoriya rascheta zhelezobetonnykh konstruktsiy na prochnost' i ustoychivost'. Sovremennye normy i Evrostandarty [Theory of Strength and Stability Calculation for Reinforced Concrete Structures. Modern Norms and European Standards]. Saint Petersburg, SPbGASU Publ.; Moscow, ASV Publ., 2006, 221 p. (in Russian)
  4. Vol'mir A.S. Gibkie plastinki i obolochki [Flexible Plates and Shells]. Moscow, GITTL Publ. 1956, 420 p. (in Russian)
  5. Miroslaw Wieczorek. Influence of Amount and Arrangement of Reinforcement on the Mechanism of Destruction of the Corner Part of a Slab-Column Structure. Proсedia Engineering. 2013, vol. 57, pp. 1260—1268. Available at: http://www.sciencedirect.com. Date of access: 5.12.2014. DOI: http://dx.doi.org/10.1016/j.proeng.2013.04.159.
  6. Vatin I.N., Ivanov A.D. Sopryazhenie kolonny i bezrebristoy beskapitel'noy plity perekrytiya monolitnogo zhelezobetonnogo karkasnogo zdaniya [Pairing of Columns And Slabs Without Edges And Without Capitals Monolithic In A Reinforced Concrete Frame Building]. Saint Petersburg, 2006, 82 p. Available at: http://www.engstroy.spb.ru/library/ivanov_kolonna_i_perekrytie.pdf. Date of access: 22.01.2014. (in Russian)
  7. Samokhvalova E.O., Ivanov A.D. Styk kolonny s bezbalochnym beskapitel'nym perekrytiem v monolitnom zdanii [Joint of Columns with Beamless Noncap Overlap in a Monolithic Building]. Inzhenerno-stroitel'nyy zhurnal [Civil Engineering Journal]. 2009, no. 3, pp. 33—37. Available at: http://www.engstroy.spb.ru/index_2009_03/samohvalova_styk.pdf. Date of access: 22.01.2014. (in Russian)
  8. Rukovodstvo po proektirovaniyu zhelezobetonnykh konstruktsiy s bezbalochnymi perekrytiyami [Guidelines for the Design of Concrete Structures with Beamless Floors ]. Moscow, Stroyizdat Publ., 1979, 50 p. (in Russian)
  9. Tikhonov I.N. Armirovanie elementov monolitnykh zhelezobetonnykh zdaniy [Reinforcement of the Elements of Monolithic Reinforced Concrete Buildings]. Moscow, NIIZhB im. A.A. Gvozdeva Publ., 2007,168 p. (in Russian)
  10. Bezukhov N.I. Osnovy teorii uprugosti, plastichnosti i polzuchesti [Fundamentals of the Theory of Elasticity and Creep]. Moscow, Vysshaya shkola Publ., 1968, 512 p. (in Russian)
  11. Zenunovica D., Folic R. Models for Behavior Analysis of Monolithic Wall and Precast or Monolithic Floor Slab Connections. Engineering Structures. July 2012, vol. 40, pp. 466—478. Available at: http://www.sciencedirect.com/science/article/pii/S0141029612001241. Date of access: 10.01.2014. DOI: http://dx.doi.org/10.1016/j.engstruct.2012.03.007.
  12. Soudki K., El-Sayed A.K., VanZwolc T. Strengthening of Concrete Slab-Column Connections Using CFRP Strips. Journal of King Saud University — Engineering Sciences. January 2012, vol. 24, no. 1, pp. 25—33. Available at: http://www.sciencedirect.com/science/article/pii/S1018363911000559. Date of access: 10.04.2013.
  13. Paillé J.-M. Eurocode. Calcul des structures en béton. Guide d'application. Paris, Afnor, Eyrolles, octobre 2013, 718 p. Available at: http://www.editions-eyrolles.com/Livre/9782212137330/calcul-des-structures-en-beton. Date of access: 10.01.2014.
  14. Altenbach H., Huang C., Naumenko K. Creep-damage Predictions in Thin-Walled Structures by Use of Isotropic and Anisotropic Damage Models. The journal of Strain Analysis for Engineering Design. 2002, vol. 37, no. 3, pp. 265—275. DOI: http://dx.doi.org/10.1243/0309324021515023.
  15. Altenbach H., Morachkovsky O., Naumenko K., Sychov A. Geometrically Nonlinear Bending of Thin-Walled Shells and Plates under Creep-Damage Conditions. Archive of Applied Mechanics. 1997, vol. 67, no. 5, pp. 339—352. DOI: http://dx.doi.org/10.1007/s004190050122.

Download

Stress-strain properties of concrete made of the chip of crushed concrete

Vestnik MGSU 10/2016
  • Bezgodov Igor’ Mikhaylovich - Moscow State University of Civil Engineering (National Research University) (MGSU) research worker, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Pakhratdinov Alpamys Abdirashitovich - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student, Department of Construction Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Tkach Evgeniya Vladimirovna - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Construction Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 24-34

The use of crushed concrete scrap, the volume of which is quite essential, is constrained by the regulatory framework and poor studies of stress-strain characteristics of concrete. In order to solve this problem it is necessary to conduct comparative experiments with the aim of obtaining the strength and deformation characteristics of concrete, which will allow determining the possible list of structures for industrial and civil objects. Tests were carried out on the assessment of prism strength, modulus of elasticity, coefficient of lateral deformation, the maximum compression strain, tensile strength in bending as well as tests of reinforced concrete beams produced of the same compositions for evaluation of failure load, strain and deflection diagram construction with the aim of identifying distinctive characteristics of strength and deformation characteristics of concrete obtained of crushed concrete waste in comparison with the characteristics of concrete made of granite macadam. The results of the investigation show that the use of crushed concrete waste in reinforced concrete structures is quite allowable and there is no need in serious adjustments in the calculations, especially for concretes of low grades.

DOI: 10.22227/1997-0935.2016.10.24-34

Download

The influence of the scale effect and high temperatures on the strength and strains of high performance concrete

Vestnik MGSU 3/2014
  • Korsun Vladimyr Ivanovych - Donbas National Academy of Civil Engineering and Architecture (DonNASA) Doctor of Technical Sciences, Professor, Head, Department of Reinforced Concrete Structures, Donbas National Academy of Civil Engineering and Architecture (DonNASA), 2 Derzhavin str., Makeyevka, Donetsk region, Ukraine, 86123; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Korsun Artem Vladimirovych - Donbas National Academy of Civil Engineering and Architecture (DonNASA) Candidate of Technical Sciences, Associate Professor, Department of Reinforced Concrete Structures, Donbas National Academy of Civil Engineering and Architecture (DonNASA), 2 Derzhavin str., Makeyevka, Donetsk region, Ukraine, 86123; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 179-188

The most effective way to reduce the structure mass, labor input and expenses for its construction is to use modern high-performance concrete of the classes С50/60… С90/105, which possess high physical and mathematic characteristics. One of the constraints for their implementation in mass construction in Ukraine is that in design standards there are no experimental data on the physical and mathematic properties of concrete of the classes more than С50/60. Also there are no exact statements on calculating reinforced concrete structures made of high-performance concretes.The authors present the results of experimental research of the scale effect and short-term and long-term heating up to +200 ° C influence on temperature and shrinkage strain, on strength and strain characteristics under compression and tensioning of high-strength modified concrete of class C70/85. The application of high performance concretes is challenging in the process of constructing buildings aimed at operating in high technological temperatures: smoke pipes, coolers, basins, nuclear power plants' protective shells, etc. Reducing cross-sections can lead to reducing temperature drops and thermal stresses in the structures.

DOI: 10.22227/1997-0935.2014.3.179-188

References
  1. Korsun A.V. Osobennosti deformirovaniya i razrusheniya vysokoprochnykh modifitsirovannykh betonov v usloviyakh nagreva do +200 ?Ñ [Features of Deformation and Destruction of High Performance Modifi ed Concretes in Case of Heating up to +200 °Ñ]. Vestnik DonNASA [Proceedings of Donbas National Academy of Civil Engineering and Architecture]. 2007, no. 1(63), pp. 116—121.
  2. Korsun V.I. Napryazhenno-deformirovannoe sostoyanie zhelezobetonnykh konstruktsiy v usloviyakh temperaturnykh vozdeystviy [Stress and Strain State of Reinforced Concrete Structures under Thermal Impacts]. Makeevka, DonGASA Publ., 2003, 153 p.
  3. GOST 24452—80. Betony. Metody opredeleniya prizmennoy prochnosti, modulya uprugosti i koeffitsienta Puassona [Russian State Standard 24452—80. Concretes. Methods of Defining Prism Strength, Elastic Module and Poisson's ratio]. Moscow, Izdatel'stvo standartov Publ., 1980.
  4. CEN: Eurocode 2 (2004). Design of Concrete Structures: Part 1-1 General Rules and Rules for Buildings, EN 1992-1-1: 2004.
  5. Korsun V.I., Kalmykov Yu.Yu. Neodnorodnost' prochnostnykh i deformatsionnykh svoystv betona po ob"emu massivnykh elementov konstruktsiy [Heterogeneity of Strength and Strain Properties of Concrete According to the Size of Massive Construction Elements]. Sovremennye problemy stroitel'stva [Current Problems in Construction]. Donetsk, Donetskiy PromstroyNIIproekt, OOO «Lebed'» Publ. 2002, vol. 2, pp. 95—102.

Download

Optimization of cement composites with the use of fillers from the Chechen Republic fields

Vestnik MGSU 12/2014
  • Balatkhanova Elita Mahmudovna - Ogarev Mordovia State University (MGU im. Ogareva) doctoral candidate, Department of Construction Materials and Technologies, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Erofeev Vladimir Trofimovich - Ogarev Mordovia State University (MGU im. Ogareva) Doctor of Technical Sciences, Professor, Chair, Department of Construction Materials and Technologies, dean, Department of Architecture and Construction, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Bazhenov Yuriy Mikhailovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Chair, Department of Binders and Concrete Technology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 287-49-14, ext. 31-02, 31-03, 31-01; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Mitina Elena Aleksandrovna - Ogarev Mordovia State University (MGU im. Ogareva) Candidate of Technical Sciences, Associate Professor, Department of Highways and Special Engineering Structures, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Rodin Alexander Ivanovich - Ogarev Mordovia State University (MGU im. Ogareva) Candidate of Technical Sciences, Senior Lecturer, Department of Economy and Management in Construction, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Eremin Aleksey Vladimirovich - Moscow State University of Civil Engineering (MGSU) head, laboratory of Physical and Chemical Analysis, Scientific and Research Institute of Construction Materials and Technologies, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Adamtsevich Aleksey Olegovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, head, Principal Regional Center of Collective Use of Scientific Institute of Construction Materials and Technologies, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 656-14-66; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 121-130

The fillers together with binders take part in microstructure formation of matrix basis and contact zones of a composite. The advantage of cement matrix structure with a filler is that inner defects are localized in it - microcracks, macropores and capillary pores, as well as that their quantity, their sizes and stress concentration decrease. Structure formation of filled cement composites is based on the processes taking place in the contact of liquid and stiff phases, which means, it depends on the quantitative relation of the cement, fillers and water, and also dispersivity and physical and chemical activity of the fillers. In the article the authors offer research results of the processes of hydration and physical-mechanical properties of cement composites with fillers from the fields of the Chechen Republic. Research results of heat cement systems are presented, modified by fine fillers. Optimal composition of cement composites filled with powders of quartz, sandstone, river and a mountain limestone of different particle size composition, characterized by a high strength, are obtained.

DOI: 10.22227/1997-0935.2014.12.121-130

References
  1. Afanas’ev N.F., Tseluyko M.K. Dobavki v betony i rastvory [Additives in Concrete and Solutions]. Kiev, Budivel’nyk Publ., 1989, 128 p. (In Russian)
  2. Dvorkin L.I., Solomatov V.I., Vyrovoy V.N., Chudnovskiy S.M. Tsementnye betony s mineral’nymi napolnitelyami [Cement Concretes with Mineral Fillers]. Kiev, Budivel’nyk Publ., 1991, 136 p. (In Russian)
  3. Lazarev A.V., Kaznacheev S.V., Erofeeva I.V., Rodina N.G. Vliyanie vida napolnitelya na deformativnost’ epoksidnykh kompozitov v usloviyakh vozdeystviya model’noy bakterial’noy sredy [Infl uence of a Type of a Filler on Deformability of Epoxy Composites in the Conditions of Infl uence of Model Bacterial Environment]. Razrabotka effektivnykh aviatsionnykh, promyshlennykh, elektrotekhnicheskikh i stroitel’nykh materialov i issledovanie ikh dolgovechnosti v usloviyakh vozdeystviya razlichnykh ekspluatatsionnykh faktorov : materialy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii 19—20 dekabrya 2013 g. [Materials of the International Scientific and Technical Conference: Development of Effective Aviation, Industrial, Electrotechnical and Construction Materials and Research of their Durability in the Conditions of the Influence of Various Operational Factors]. Saransk, Mordovia State University Publ., 2013, pp. 188—194. (In Russian)
  4. Panteleev A.S., Kolbasov V.N., Savin E.S. Karbonatnye porody — mikronapolniteli dlya tsementa [Carbonate Breeds — Microfillers for Cement]. Trudy MKhTI im. D.I. Mendeleeva [Works of D. Mendeleyev Institute of Chemical Technology of Moscow]. 1964, no. 45, pp. 19—24. (In Russian)
  5. Solomatov V.I., Takhirov M.K., Takher Shakh Md. Intensivnaya tekhnologiya betona [Intensive Technology of Concrete]. Moscow, Stroyizdat Publ., 1989, 284 p. (In Russian)
  6. Bazhenov Yu.M. Novomu veku — novye betony [New Concretes to the New Age]. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka [Construction Materials, Equipment, Technologies of the 21st Century]. 2000, no. 2 (11), no. 10. (In Russian)
  7. Degtyareva M.M. Tekhnologiya i svoystva betona s binarnym napolnitelem «kvarts — izvestnyak» [Technology and Properties of concrete with Binary Fillers "Quartz-Limestone"]. Theses for the Dissertation of the Candidate of Technical Sciences. Moscow, 1995, 19 p. (In Russian)
  8. Erofeev V.T., Bazhenov Yu.M., Zavalishin E.V., Bogatov A.D., Astashov A.M., Korotaev S.A., Nikitin L.V. Silikatnye i polimersilikatnye kompozity karkasnoy struktury rolikovogo formirovaniya [Silicate and Polymer-Silicate Composites of the Truss Structure of Roller Formation]. Moscow, ASV Publ., 2009, 160 p. (In Russian)
  9. Krasnyy I.M. O mekhanizme povysheniya prochnosti betona pri vvedenii mikronapolnitelya On the Method of Concrete Strength Increase in Case of Microfi ller Introduction]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 1987, no. 5, pp. 10—11. (In Russian)
  10. Ovcharenko F.D., Solomatov V.I., Kazanskiy V.M. O mekhanizme vliyaniya tonkomolotykh dobavok na svoystva tsementnogo kamnya [On the Infl uence Mechanism of Floured Additives on Cement Stone Properties]. Doklady AN SSSR [Reports of Academy of Sciences of the USSR]. 1985, vol. 284, no. 2, pp. 289—403. (In Russian)
  11. Solomatov V.I. Razvitie polistrukturnoy teorii kompozitsionnykh stroitel’nykh materialov [Development of the Polystructural Theory of Composite Construction Materials]. Izvetiya vuzov. Stroitel’stvo i arkhitektura [Proceedings of Institutions of Higher Education. Construction and Architecture]. 1985, no. 8, pp. 58—64. (In Russian)
  12. Basin E.V., editor. Rossiyskaya arkhitekturno-stroitel’naya entsiklopediya. T. 1. Stroyindustriya, stroitel’nye materialy, tekhnologiya i organizatsiya proizvodstva rabot. Stroitel’nye mashiny i oborudovanie [Russian architectural and construction encyclopedia. Vol. 1. Construction Industry, Construction Materials, Technology and Works Management]. Moscow, VNIINTPI Publ., 1995, vol. 1, 495 p. (In Russian)
  13. Adamtsevich A.O., Pustovgar A.P., Eremin A.V., Pashkevich S.A. Vliyanie formiata kal’tsiya na gidratatsiyu tsementa s uchetom fazovogo sostava i temperaturnogo rezhima tverdeniya [Investigation of the Effect of Calcium Formate on Hydration Process of Cement with Account for the Phase Composition and Temperature Mode of Hardening]. Stroitel’nye materialy [Construction Materials]. 2013, no. 7, pp. 59—61. (In Russian)
  14. Makridin N.I., Tarakanov O.V., Maksimova I.N., Surov I.A. Faktor vremeni v formirovanii fazovogo sostava struktury tsementnogo kamnya [Time Factor in Formation of Phase Structure of a Cement Stone]. Regional’naya arkhitektura i stroitel’stvo [Regional architecture and construction]. 2013, no. 2, pp. 26—31. (In Russian)
  15. Barbara Lothenbach, Gwenn Le Saout, Mohsen Ben Haha, Renato Figi, Erich Wieland Hydration of a low-alkali CEM III/B–SiO2 cement (LAC). Cement and Concrete Research. 2012, vol. 42, no. 2, pp. 410—423. DOI: http://dx.doi.org/10.1016/j.cemconres.2011.11.008.
  16. Jansen D., Goetz-Neunhoeffer F., Lothenbach B., Neubauer J. The Early Hydration of Ordinary Portland Cement (OPC): An Approach Comparing Measured Heat Flow with Calculated Heat Flow from QXRD. Cement and Concrete Research, 2012, vol. 42, no. 1, pp. 134—138. DOI: http://dx.doi.org/10.1016/j.cemconres.2011.09.001.
  17. Jeffrey W. Bullard, Hamlin M. Jennings, Richard A. Livingston, Andre Nonat, George W. Scherer, Jeffrey S. Schweitzer, Karen L. Scrivener, Jeffrey J. Thomas Mechanisms of Cement hydration. Cement and Concrete Research. December 2011, vol. 41, no. 12, pp. 1208—1223. DOI: 10.1016/j.cemconres.2010.09.011.
  18. Nguyen Van Tuan, Guang Ye, Klaas van Breugel, Oguzhan Copuroglu. Hydration and Microstructure of Ultra High Performance Concrete Incorporating Rice Husk Ash. Cement and Concrete Research. 2011, vol. 41, no. 11, pp. 1104—1111.
  19. Pashkevich S., Pustovgar A., Adamtsevich A., Eremin A. Pore Structure Formation of Modified Cement Systems, Hardening over the Temperature Range from +22°C to –10°C. Applied Mechanics and Materials. 2014, vols. 584—585, pp. 1659—1664.
  20. Sabine M. Leisinger, Barbara Lothenbach, Gwenn Le Saout, C. Annette Johnson. Thermodynamic Modeling of Solid Solutions Between Monosulfate and Monochromate 3CaO Al2O3 Ca[(CrO4)x(SO4)1-x] nH2O. Cement and Concrete Research. 2012, vol. 42, No. 1, pp. 158—165. DOI: 10.1016/j.cemconres.2011.09.005.

Download

Obtaining and physical mechanical properties of cement composites with the use of fillers and mixing water from the Chechen Republic fields

Vestnik MGSU 12/2014
  • Erofeev Vladimir Trofimovich - Ogarev Mordovia State University (MGU im. Ogareva) Doctor of Technical Sciences, Professor, Chair, Department of Construction Materials and Technologies, dean, Department of Architecture and Construction, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Bazhenov Yuriy Mikhailovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Chair, Department of Binders and Concrete Technology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 287-49-14, ext. 31-02, 31-03, 31-01; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Balatkhanova Elita Mahmudovna - Ogarev Mordovia State University (MGU im. Ogareva) doctoral candidate, Department of Construction Materials and Technologies, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Mitina Elena Aleksandrovna - Ogarev Mordovia State University (MGU im. Ogareva) Candidate of Technical Sciences, Associate Professor, Department of Highways and Special Engineering Structures, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Emel’yanov Denis Vladimirovich - Ogarev Mordovia State University (MGU im. Ogareva) Candidate of Technical Sciences, Senior Lecturer, Department of Construction Materials and Technologies, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Rodin Alexander Ivanovich - Ogarev Mordovia State University (MGU im. Ogareva) Candidate of Technical Sciences, Senior Lecturer, Department of Economy and Management in Construction, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Karpushin Sergey Nikolaevich - Ogarev Mordovia State University (MGU im. Ogareva) postgraduate student, Department of Construction Materials and Technologies, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (987) 692-36-98; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 141-151

Improving physical mechanical and operational properties of concretes and other composite materials is one of the most important tasks in construction material science. At the present time various methods are applied for that, which includes the use of additives, composite binders, activated mixing water, etc. Composite construction materials based on cement binders with mineral additives are widelu used, because they possess improved physical mechanical and technological properties. Implementation of additives improve placeability and nonsegregation factors of concrete and mortar mixes, lead to compaction of concrete and mortars structure. The additives substantially lower heat generation of concretes, which is of great importance in concrete casting of large structures. The article presents the results of experimental studies of cement composites filled with powders of rocks and mixable with activated water from the deposits of the Chechen Republic. The soundness of cement compositions with the additives of mountain and river limestone, sandstone and quartz sand was established. The results of experimental studies on establishing the effect of fine and coarse aggregate on strength formation of cement composites activated by water mixing were presented.

DOI: 10.22227/1997-0935.2014.12.141-151

References
  1. Bazhenov Yu.M., Fedosov S.V., Erofeev V.T., Matvievskiy A.A., Mitina E.A., Emel’yanov D.V., Yudin P.V. Tsementnye kompozity na osnove magnitno- i elektrokhimicheski aktivirovannoy vody zatvoreniya [Cement Composites on the Basis of the Magnetic and Electrochemical Activated Mixing Water]. Saransk, Mordovia University Publ., 2011, 128 p. (In Russian)
  2. Bazhenov Yu.M., Fomichev V.T., Erofeev V.T., Fedosov S.V., Matvievskiy A.A., Osipov A.K., Emel’yanov D.V., Mitina E.A., Yudin P.V. Teoreticheskoe obosnovanie polucheniya betonov na osnove elektrokhimicheski- i elektromagnitnoaktivirovannoy vody zatvoreniya [Theoretical Justification of Obtaining Concretes on a Basis of Electrochemical and electromagnetically-driven Water]. Internet-Vestnik VolgGASU. Seria: Politematicheskaya [Internet Proceedings of Volgograd State University of Architecture and Civil Engineering. Series: Polytematic]. 2012, vol. 2 (22), p. 4. Available at: http://vestnik.vgasu.ru/attachments/1_Bazhenov-Fomichev-2012_2(22).pdf/. Date of access: 15.07.2014. (In Russian)
  3. Erofeev V.T., Fomichev V.T., Emel’yanov D.V., Rodin A.I., Eremin A.V. Vliyanie aktivirovannoy vody zatvoreniya na strukturoobrazovanie tsementnykh past [Infl uence of the Activated Water on Structurization of Cement Pastes]. Vestnik Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. Seriya: Stroitel’stvo i arkhitektura [Proceedings of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture]. 2013, vol. 30 (49), pp. 179—183. (In Russian)
  4. Kalashnikov V.I., Erofeev V.T., Moroz M.N., Troyanov I.Yu., Volodin V.M., Suzdal’tsev O.V.Nanogidrosilikatnye tekhnologii v proizvodstve betonov [Nanohydrosilicate Technologies for Production of Concretes]. Stroitel’nye materialy [Construction Materials]. 2014, no. 5, pp. 88—91. (In Russian)
  5. Jung V.N. Osnovy tekhnologii vyazhushchikh veshchestv [Bases of the Technology of Binding Substances]. Moscow, Gosstroyizdat Publ., 1951, pp. 509—511. (In Russian)
  6. Kaprielov S.S., Travush V.I., Karpenko N.I., Sheynfel’d A.V., Kardumyan G.S., Kiseleva Ya.A., Prigozhenko O.V. Modifi tsirovannye betony novogo pokoleniya v sooruzheniyakh MMDTs «Moskva-Siti» [Modifi ed Concretes of New Generation in the Constructions of Business Centre “Moscow City”]. Stroitel’nye materialy [Construction Materials]. 2006, no. 10, pp. 13—18. (In Russian)
  7. Entin Z.B., Khomich V.Kh., Ryzhov L.K. i dr. Ekonomiya tsementa v stroitel’stve [Economy of Cement in Construction]. Moscow, Stroyizdat Publ., 1985, 222 p. (In Russian)
  8. Takhirov M.K. Rol’ prirody poverkhnosti v protsessakh strukturoobrazovaniya tsementnoy kompozitsii s voloknistym napolnitelem [Role of the Surface Nature in the Processes of Structurization of Cement Composition with a Fibrous Filler]. MIIT. Trudy [Moscow State University of Railway Engineering. Works]. Vyp. 902. Novoe v stroitel'no materialovedenii : mezhvuzovskiy sbornik [No. 902. New in Construction Material Science : Interuniversity Collection]. V.I. Solomatov, editor . Moscow, MIIT Publ., 1997, pp. 48—51. (In Russian)
  9. Adamtsevich A.O., Pustovgar A.P., Eremin A.V., Pashkevich S.A. Issledovanie vliyaniya formiata kal’tsiya na protsess gidratatsii tsementa s uchetom fazovogo sostava i temperaturnogo rezhima tverdeniya [Research of the Infl uence of Calcium Formate on the Process of Cement Hydration with Account for the Phase Structure and Temperature Mode of Curing]. Stroitel’nye materialy [Construction Materials]. 2013, no. 7, pp. 59—62. (In Russian)
  10. Makridin N.I., Tarakanov O.V., Maksimova I.N., Surov I.A. Faktor vremeni v formirovanii fazovogo sostava struktury tsementnogo kamnya [Time Factor in the Formation of Phase Composition of a Cement Stone Structure]. Regional’naya arkhitektura i stroitel’stvo [Regional Architecture and Construction]. 2013, no. 2, pp. 26—31. (In Russian)
  11. Zozulya P.V. Karbonatnye porody kak zapolniteli i napolniteli, v tsementakh, tsementnykh rastvorakh i betonakh [Carbonate Breeds as Aggregates and Fillers, in Cements, Cement Mortars and Concretes]. Giprotsement-nauka [Giprotsement Science]. Available at http://www.giprocement.ru/about/articles.html/p=25/. Date of access: 06.10.2009. (In Russian)
  12. Chekhov A.P., Sergeev A.M., Dibrov G.D. Spravochnik po betonam i rastvoram [Reference Book on Concretes and Solutions]. 3rd edition, revised and enlarged. Kiev, Budivel’nik Publ., 1983, pp. 34—35. (In Russian)
  13. Lothenbach B., Le Saout G., Ben Haha M., Figi R., Wieland E. Hydration of a lowalkali CEM III/B–SiO2 cement (LAC). Cement and Concrete Research. 2012, vol. 42, no. 2, pp. 410—423. DOI: http://dx.doi.org/10.1016/j.cemconres.2011.11.008.
  14. Jansen D., Goetz-Neunhoeffer F., Lothenbach B., Neubauer J. The Early Hydration of Ordinary Portland Cement (OPC): An Approach Comparing Measured Heat Flow with Calculated Heat Flow from QXRD. Cement and Concrete Research. 2012, vol. 42, no. 1, pp. 134—138. DOI: http://dx.doi.org/10.1016/j.cemconres.2011.09.001.
  15. Jeffrey W. Bullard, Hamlin M. Jennings, Richard A. Livingston, Andre Nonat, George W. Scherer, Jeffrey S. Schweitzer, Karen L. Scrivener, Jeffrey J. Thomas. Mechanisms of Cement Hydration. Cement and Concrete Research. 2011, vol. 41, no. 12, pp. 1208—1223. DOI: http://dx.doi.org/10.1016/j.cemconres.2010.09.011.
  16. Nguyen Van Tuan, Guang Ye, Klaas van Breugel, Oguzhan Copuroglu. Hydration and Microstructure of Ultra High Performance Concrete Incorporating Rice Husk Ash. Cement and Concrete Research. 2011, vol. 41, no. 11, pp. 1104—1111.
  17. Pashkevich S., Pustovgar A., Adamtsevich A., Eremin A. Pore Structure Formation of Modified Cement Systems, Hardening over the Temperature Range from +22°C to –10°C. Applied Mechanics and Materials. 2014, vols. 584—585, pp. 1659—1664.
  18. Sabine M. Leisinger, Barbara Lothenbach, Gwenn Le Saout, C. Annette Johnson. Thermodynamic Modeling of Solid Solutions Between Monosulfate and Monochromate 3CaO—Al2O3—Ca[(CrO4)x(SO4)1-x]?nH2O. Cement and Concrete Research. 2012, vol. 42, pp. 158—165. DOI: 10.10.16/j.cemcoures.2011.09.005.
  19. Stork Yu. Teoriya sostava betonnoy smesi [Theory of Concrete Mix Composition]. Transl. from Slovakian by M.A. Smyslova. Leningrad, Stroyizdat Publ., 1971, 238 p. (In Russian)
  20. Hewlett P. Lea’s Chemistry of Cement and Concrete. Butterworth-Heinemann, 2003. 1092 p.

Download

DECORATIVE SANDWICH CONCRETES WITH A PROTECTIVE POLYMER LAYER ENSURING IMPROVED FRACTURE STRENGTH

Vestnik MGSU 3/2012
  • Moiseenko Ksenija Sergeevna - Moscow State University of Civil Engineering(MSUCE) Candidate of Technical Sciences, Senior Lecturer, Department of Technology of Binders and Concretes, Moscow State University of Civil Engineering(MSUCE), 26 Yaroslavskoeshosse, Moscow, 129337, Russia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Voronin Viktor Valerianovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Technologies of Cohesive Materials and Concretes, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, 129337, Russian Federation.
  • Panchenko Aleksandr Ivanovich - Moscow State University of Civil Engineering (MSUCE) 8 (499) 287-49-14, ext. 3101, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoeshosse, Moscow, 129337, Russia.
  • Solovev Vitalij Nikolaevich - Moscow State University of Civil Engineering (MSUCE) Doctor of Technical Sciences, Professor, Department of Construction of Nuclear Plants 8(499) 188-03-03, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoeshosse, Moscow, 129337, Russia.

Pages 96 - 99

This paper covers the integrity of decorative sandwich materials; relations between relative deformations of the sandwich system and the length of contact between layers; thicknesses of the surface layer and relative deformations of the concrete base. Principles of the proposed technology are also provided in the article.
The field study of the behaviour of decorative sandwich concrete products exposed to severe conditions of operation have proven that products collapse due to cracking and peeling of the polymer concrete layer in particular cases.
Deformations of sandwich materials caused by temperature and humidity fluctuations were analyzed by strain-gauge resistance sensors placed onto the surface polymer concrete layer of a product fragment and on the concrete base in the course of their freezing. Deformations were measured at the temperature intervals of 4 to 5 degrees Celsius. Freezing represents the most severe condition.
Mathematical method of experimental planning was employed to identify the dependence between relative deformations of sandwich system Исс and length of layer-to-layer contact L, thickness of surface layer h and relative deformations of the concrete base ɛ 105.
As a result of the probabilistic and statistical processing of the experimental data a three-factor quadratic model of relative deformations of a sandwich system was generated.
This equation is used to identify the most favourable conditions to assure the integrity of a sandwich product under the combined impact of the aforementioned factors. The analysis has proven that the surface layer made of polymer concrete does not crack irrespective of the contact length if deformations of the concrete base do not exceed the limit tensibility of the surface layer. In the event of substantial deformations of the concrete base, integrity of the sandwich system is to be assured by means of the right choice of thickness and length of the surface layer.
Based on the dependence of relative deformations of the sandwich composite, made of a concrete matrix and a polymer concrete decorative and protective layer, analysis of their integrity was performed with the account for the thickness of the surface layer, contact length and relative deformations of the water saturated concrete base in the course of freezing.
Pre-set theoretical provisions were applied to develop recommendations aimed at the optimization of the composition and characteristics of the technology of production of double-layer decorative and protective products based on polymer and mineral binders.

DOI: 10.22227/1997-0935.2012.3.96 - 99

References
  1. Piskarev B.A. Dekorativno-otdelochnye stroitel’nye materialy [Decorative Finishing Building Materials]. Moscow, Vysshaja shkola, 1977.
  2. Bazhenov Ju.M. Tehnologiya betona [Technology of Concrete], Moscow, ASV, 2007.
  3. Voronin V.V. Morozostoykost’ i tehnologiya betona s modificirovannym poverhnostnym sloem [Frost Resistance and Technology of Concrete with a Modified Surface Layer]. Author’s abstract of a doctoral dissertation, Moscow, MISI im. V.V. Kuybysheva, 1985.
  4. Moiseenko K.S. Povyshenie treschinostoykosti sloistykh betonnykh izdeliy s dekorativnym polimerbetonnym zaschitnym sloem [Improvement of Fracture Resistance of Sandwich Concrete Products with a Decorative Polymer Concrete Protective Layer]. Author’s abstract of a candidate’s dissertation, Moscow, MGSU, 2011.

Download

Results 1 - 20 of 38
  • «
  •  Start 
  •  Prev 
  •  1 
  •  2 
  •  Next 
  •  End 
  • »