Engineering-geological or geoecological processes and phenomena; their development in the present-day environment

Vestnik MGSU 9/2012
  • Potapov Aleksandr Dmitrievich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Head, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Potapov Ivan Aleksandrovich - Scientific and Research Institute of Emergency Healthcare named after N.V. Sklifosovskiy engineer, Scientific and Research Institute of Emergency Healthcare named after N.V. Sklifosovskiy, ; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 191 - 196

The authors consider theoretical issues of the present-day interpretation and applicability of
the terms and concepts of the engineering geology and geoecology. The authors propose a new
approach to the formulation of definitions of the founding concepts of major categories of the engineering
geodynamics as the constituent part of the engineering geology. At the current stage of
development of the geoecology, the processes and phenomena typical for the geological environment
considered from the viewpoint of civil engineering are regarded as geoecological rather than
engineering and geological.
Examples of incorrect interpretation of these concepts of engineering geology replace the
study of the processes and phenomena of the engineering geology by the study of exogenous
processes in the upper zone of the earth crust. Negative processes underway in the geological environment
that are considered within the framework of the engineering geology should be assessed
as geoecological. The assessment of the present-day use of the term "geoecological processes and
phenomena" is based on the principle of indecomposability and unity of the geosphere. This fact
serves as the basis for the modern interpretation of concepts of engineering geology or geoecology
that relate to the geological environment and its use as the setting of construction works.
The authors demonstrate that the pollution of the atmospheric air or its transparency affect
structures. It causes changes in the hydrogeological conditions that may cause a flood or reduction
of the level of underground waters that influence the behaviour of bases of constructions.
Anthropogenic impacts that cause the temperature and chemical pollution of the subterranean hydrosphere
can lead to the dissolution of rocks, trigger karst processes, boost the speed of underground
waters, and, thus, trigger the mechanical suffosion in the sands. The concept of geoecological
processes and phenomena as the basic categories needs the assessment of the geological
environment when exposed to the anthropogenic impact.

DOI: 10.22227/1997-0935.2012.9.191 - 196

  1. Kamenskiy G.N., Korchebokov N.A., Razin K.I. Dvizhenie podzemnykh vod v neodnorodnykh plastakh [Motion of Subterranean Waters inside Heterogeneous Strata]. Moscow, Soedinennoe nauchno-tekhnicheskoe izd-vo publ., 1935.
  2. Anan’ev V.P., Potapov A.D. Inzhenernaya geologiya [Engineering Geology]. Moscow, Vysshaya shkola publ., 2009.
  3. Norint S.A. Bol’shoy tolkovyy slovar’ russkogo yazyka [Big Explanatory Dictionary of the Russian Language]. St.Petersburg, 1998.
  4. Mirkin B.M. Terminy i opredeleniya po okhrane okruzhayushchey sredy, prirodopol’zovaniyu i ekologicheskoy bezopasnosti [Terms and Defi nitions Relating to Environmental Protection, Use of Natural Resources and Environmental Safety]. St.Petersburg, SPbGU Publ., 2001.
  5. Savchenko V.N., Smagin V.P. Nachala sovremennogo estestvoznaniya [Basics of Contemporary Natural Science]. Rostov-on-Don, Tezaurus Publ., 2006.
  6. Slovar’ terminov chrezvychaynykh situatsiy [Dictionary of Emergency Terms]. Moscow, Ministry of Emergencies Management Publ., 2010.
  7. Potapov A.D. Ekologiya [Ecology] Moscow, Vysshaya shkola Publ., 2005.
  8. Korolev V.A. Ochistka gruntov ot zagryazneniy [Decontamination of Soil]. Moscow, MAIK Nauka/Interperiodika Publ., 2001.
  9. Potapov I.A., Shimenkova A.A., Potapov A.D. Zavisimost’ suffozionnoy ustoychivosti peschanykh gruntov razlichnogo genezisa ot tipa fil’trata [Dependence of Suffosion Stability of Sandy Soils of Various Geneses on the Type of Filtrate]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 5, pp. 79—86.



Vestnik MGSU 4/2018 Volume 13
  • Khomenko Victor Petrovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Geological and Mineralogical Sciences, Senior Researcher, Professor, Department of Engineering Surveys and Geoecology; ORCID 0000-0001-9198-4401, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 482-489

Subject: karst and suffosion are related to exogenous geological processes, the development of which is caused by destruction of rocks by groundwater. These are the processes dangerous for construction, and the main problem in studying these processes lies in their inaccessibility for direct visual observation. Research objectives: achievement of mutual understanding between prospectors and designers when solving the problems arising from construction-related development of territories where a negative impact of karst and (or) suffosion on buildings and structures is expected. Materials and methods: the method of historical analysis of efficiency of engineering solutions. Results: Russia has a long and rich experience in the application of antikarst and antisuffosion protective measures, which is analyzed in the present article from historical positions. In the author’s opinion, successful implementation of these measures is possible only with the close cooperation of prospectors-geologists and geotechnical designers. Systematized representation of the evolution of methods and techniques that ensure accident-free operation of objects of various types of construction in the presence of karst and (or) suffosion hazard is given. Conclusions: currently, our country has a rich and well-proven arsenal of means of protecting buildings and structures from karst and suffosion, including constructive, geotechnical and other measures.

DOI: 10.22227/1997-0935.2018.4.482-489


Results 1 - 2 of 2