ENGINEERING RESEARCH AND EXAMINATION OF BUILDINGS. SPECIAL-PURPOSE CONSTRUCTION

Dynamic monitoring of engineering structures as a key element of its technical security

Vestnik MGSU 3/2014
  • Patrikeev Aleksandr Vladimirovich - Centre for Diagnostics and Monitoring (TsDM) Candidate of Technical Sciences, Director, Monitoring Department, Centre for Diagnostics and Monitoring (TsDM), 95A Varshavskoye shosse, Moscow, 117556, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 133-140

On an example of a complex engineering structure with aerodynamically unfavorable constructive form, equipped with mechanisms dampers, the results of long-term observations of the oscillation frequency under the influence of wind loads were reviewed. The experimental dependence of the first tone oscillation frequency on time for this structure is shown. The hypothesis on the causes of frequency oscillations change in engineering structures in time is proposed. The experimental data confirms this hypothesis. The results of a comparison of the experimental data for long-term observations with the oscillation frequency in accordance with the safety criteria of GOST 31937-2011 “Buildings and Constructions. Rules of inspection and monitoring of the technical condition” are shown. It has been shown that the results of comparison indicate technical safety of the whole object. It is offered to use dynamic monitoring systems for technically complex heavy-duty engineering structures for early detection of the transition beginning of the control object to the limited functional or emergency condition.

DOI: 10.22227/1997-0935.2014.3.133-140

References
  1. Shablinskiy G.E. Monitoring unikal'nykh vysotnykh zdaniy i sooruzheniy na dinamicheskie i seysmicheskie vozdeystviya [Monitoring of Unique High-rise Buildings and Structures for the Dynamic and Seismic Effects]. Moscow, ASV Publ., 2013, 328 p.
  2. Novak Yu.V., Vinogradova O.A., Solomentsev M.E. Dinamicheskie metody ispytaniya mostovykh konstruktsiy i unikal'nykh sooruzheniy[Dynamic Test Methods of Bridge Structures and Unique Structures]. Transportnoe stroitel'stvo [Transport Construction]. 2009, no. 7, pp. 2—4.
  3. Metodicheskie rekomendatsii po vibrodiagnostike avtodorozhnykh mostov [Guidelines for Highway Bridges Vibrodiagnostics]. Moscow, Rosavtodor Publ., 2001, 25 p.
  4. Kapustyan N.K. Seysmobezopasnost': obobshchenie opyta monitoringa zdaniy i sooruzheniy [Seismic Safety: Summarizing the Experience of Monitoring of Buildings and Structures]. Proektirovanie i inzhenernye izyskaniya [Design and Engineering Surveys]. 2012, no. 4 (18). Available at: http://www.acdjournal.ru/Priz%2018/3/p.html.
  5. Monitoring sostoyaniya zdaniy [Monitoring of Building Condition]. Tsentr tekhnicheskikh obsledovaniy OOO «IST». [Technical Survey Center LLC «IST»]. Novosibirsk, 2012. Available at: http://toist.ru. Date of access: 13.12.13.
  6. Patrikeev A.V., Salatov E.K., Spiridonov V.P. Dinamicheskiy monitoring zdaniy i sooruzheniy kak odin iz kriteriev obespecheniya bezopasnoy ekspluatatsii [Dynamic Monitoring of Buildings and Structures as One of the Criteria for the Safe Exploitation]. Tekhnologicheskie problemy prochnosti: Materialy 18 Mezhdunarodnogo seminara [Collected Works of the 18th International Seminar «Technological Problems of Strength»]. Podol'sk, 2011, pp. 78—81.
  7. Ostroumov B.V. Uvelichenie obshchego dempfi rovaniya vysotnykh sooruzheniy pri ustanovke na nikh dinamicheskikh gasiteley kolebaniy s zatukhaniem [Increase of the Total Damping of High-rise Buildings when Installing Dynamic Vibration Absorbers with Damping]. Montazhnye i spetsial'nye raboty v stroitel'stve [Mounting and Special Works in Construction]. 2005, no. 9, pp. 22—24.
  8. Patrikeev A.V. Povyshenie urovnya bezopasnosti inzhenernykh sooruzheniy na primere Glavnogo monumenta pamyatnika Pobedy na Poklonnoy gore v g. Moskve [Improvement of Safety of Engineering Structures Exemplifi ed by the Main Monument of the Victory Memorial on Poklonnaya Hill in the City of Moscow]. Problemy upravleniya kachestvom gorodskoy sredy: 11 nauchno-prakticheskaya konferentsiya. 27—28.09.2007 [Problems of the Urban Environment Quality Management. Collected works of the 11th Scientific and Practical Conference «Problems of Quality Management of the Urban Environment»]. Moscow, RAGS Publ., 2007, p. 82.
  9. Patrikeev A.V., Salatov E.K. Osnovy metodiki dinamicheskogo monitoringa deformacionnykh kharakteristik zdaniy i soorzhjeniy [Fundamentals of the Method of Dynamic Monitoring of Deformation Characteristics of Buildings and Structures]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 1, pp. 133—138.

Download

FUNDAMENTALS OF THE METHOD OF DYNAMIC MONITORING OF DEFORMATION CHARACTERISTICS OF BUILDINGS AND STRUCTURES

Vestnik MGSU 1/2013
  • Patrikeev Aleksandr Vladimirovich - Centre for Diagnostics and Monitoring (TsDM) Candidate of Technical Sciences, Director, Monitoring Department, Centre for Diagnostics and Monitoring (TsDM), 95A Varshavskoye shosse, Moscow, 117556, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Salatov Evgeniy Konstantinovich - 22 Pavla Korchagina St., Moscow, 129626, Russian Federation +7 (495) 683-99-93., 22 Pavla Korchagina St., Moscow, 129626, Russian Federation, ; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 133-138

The article covers the relevant problem of dynamic monitoring of buildings and structures. Items exposed to dynamic monitoring primarily include high-rise buildings and structures, as well as buildings and structures exposed to crane loads.The authors provide the general procedure of dynamic monitoring and describe its principal stages. The whole succession of actions that constitute the monitoring of the technical condition of buildings and structures can be split into several stages to be stretched over the time period. The authors demonstrate the technical specifications (including dynamic parameters) of a building or a structure in the process of its operation in the form of a graph. The authors propose their methodology of dynamic monitoring that is considered on the basis of a simple example. The authors argue that the more technically sophisticated the item to be monitored, the tougher the requirements designated for its safe operation; therefore, the interval between the stages of monitoring should be shorter. Unique structures may need monitoring using automated stationary systems to be designed within the framework of special-purpose projects.

DOI: 10.22227/1997-0935.2013.1.133-138

References
  1. Balageas D., Fritzen C.P., Guemes A. Structural Health Monitoring. Publ. ISTE Ltd, London, 2006, 496 p.
  2. Korgin A.V., Shablinskiy G.E., Sergeevtsev E.Yu., Zubkov D.A. Dinamicheskiy monitoring konstruktsiy dekorativnogo navesa i peshekhodnogo mosta v aeroportu Sheremet'evo-3 [Dynamic Monitoring of Structures of a Decorative Shed and a Pedestrian Bridge at Sheremetyevo-3 Airport]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 4, pp. 222—228.
  3. Lazebnik G. E, Kosheleva N.N. Monitoring nesushchikh konstruktsiy zdaniy povyshennoy etazhnosti [Monitoring of Bearing Structures of Excess Height Buildings]. Svit geotekhniki [The World of Geotechnics]. 2009, no. 1, pp. 14—18.
  4. Gur'ev V.V., Dorofeev V.M. O monitoringe tekhnicheskogo sostoyaniya nesushchikh konstruktsiy vysotnykh zdaniy i shirokoproletnykh sooruzheniy [On the Monitoring of the Technical Condition of Bearing Structures of High-rise Buildings and Large-span Structures]. Stroitel'nye materialy, oborudovanie, tekhnologii XXI veka [Construction Materials, Machinery, Technologies of the 21st Century]. 2006, no. 7(90), pp. 68—69.
  5. GOST R 53778—2010. Zdaniya i sooruzheniya. Pravila obsledovaniya i monitoringa tekhnicheskogo sostoyaniya. Data vvedeniya 2011-01-01. [State Standard of Russia 53778—2010. Buildings and Structures. Rules of Inspection and Monitoring of Their Technical Condition. Date of Introduction 2011-01-01]. Moscow, 2010, 67 p.
  6. Ulybin A.V., Vatin N.I. Printsipial'nye otlichiya GOST R 53778—2010 ot starykh normativov po obsledovaniyu zdaniy i sooruzheniy [Principal Differences between State Standard R 53778-2010 from Former Regulations Applicable to Inspection of Buildings and Structures]. Gidrotekhnika [Hydraulic Engineering]. 2011, no. 2(23), pp. 54—56.
  7. GOST R 54859—2011. Zdaniya i sooruzheniya. Opredelenie parametrov osnovnogo tona sobstvennykh kolebaniy. Data vvedeniya 2012-01-07. [State Standard of Russia Buildings and Structures 54859—2011. Identification of Parameters of the Basic Tone of Natural Oscillations of Buildings. Date of Introduction 2012-01-07]. Moscow, 2012, 64 p.
  8. Patrikeev A.V. Povyshenie urovnya bezopasnosti inzhenernykh sooruzheniy na primere Glavnogo monumenta pamyatnika Pobedy na Poklonnoy gore v g. Moskve [Improvement of Safety of Engineering Structures Exemplifi ed by the Main Monument of the Victory Memorial on Poklonnaya Hill in the city of Moscow]. Problemy upravleniya kachestvom gorodskoy sredy [Problems of the Urban Environment Quality Management]. Collected works of the 11th Scientific Conference. Moscow, RAGS Publ., 2007, p. 82.
  9. Patrikeev A.V., Salatov E.K., Spiridonov V.P. Dinamicheskiy monitoring zdaniy i sooruzheniy kak odin iz kriteriev obespecheniya bezopasnoy ekspluatatsii [Dynamic Monitoring of Buildings and Structures as One of the Criteria of Their Safe Exploitation]. Tekhnologicheskie problemy prochnosti [Technological Problems of Strength]. Collected works of the XVIII International Seminar. Podol'sk, 2011, pp. 78—81.
  10. Korenev B.G., Rabinovich I.M. Spravochnik po dinamike sooruzheniy [Reference Book on Dynamics of Structures]. Moscow, Stroyizdat Publ., 1972, 511 p.

Download

Results 1 - 2 of 2