Vestnik MGSU 10/2012
  • Aruova Lyazat Boranbaevna - Kyzylorda State University Named after Korkyt Ata (Korkyt Ata KSU) Doctor of Technical Sciences, Professor, Department of Architecture and Construction, Kyzylorda State University Named after Korkyt Ata (Korkyt Ata KSU), 29A Ayteke bi str., Kyzylorda, 120014, Kazakhstan; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Dauzhanov Nabi Tokmurzaevich - Kyzylorda State University named after Korkyt Ata Candidate of Technical Sciences, Associate Professor, 87015660731, Kyzylorda State University named after Korkyt Ata, 29A Ayteke bi st., Kyzylorda, 120014, Kazakhstan; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 142 - 146

In the article, the authors consider heat and mass transfer inside reinforced concrete structures, and their impact on the mechanical properties of the latter.
The authors argue that humidity is an important factor of concrete hardening. As a rule, concrete-to-environment mass transfer, as well as the mass transfer inside concrete products, cause fast dehydration in the course of hardening, thus, leading to the insufficiency of strength. This phenomenon may be exemplified by prefab concrete products hardened in the hot and dry climate. The findings of the authors constitute a simple though efficient solution that consists in the employment of solar chambers equipped with an intermediate, or supplementary, heat carrier. Solar chambers are to be installed inside production premises.
Reinforced concrete products manufactured in accordance with the technology proposed by the authors feature high strength and durability. The concrete structure and properties (namely, compressive strength, tensile strength, modulus of elasticity and cold resistance) even exceed those of the concrete products hardened within 28 days in the regular temperature and humidity environment.
Theoretical principles and experimental research findings of the authors have been invested into the year-round technology of manufacturing of reinforced concrete products inside production premises, where products are treated by the solar energy and a supplementary source of energy. The concrete mix is poured into the form and compacted there; thereafter, the product surface is smoothed. Immediately after that a cover is fixed onto the form and tightly attached to the form walls. The process is to be initiated at 8 a.m. to maximize the period of solar energy consumption and to accelerate the process of concrete hardening.

DOI: 10.22227/1997-0935.2012.10.142 - 146

  1. Abhat A., Aboul–Enein S., Malatidis N. Heat-of-fusion Storage Systems for Solar Heating Applications in Lifter, no. 132, pp. 157—172.
  2. Cease M.E., White D.H. Emulsification of Thermal Energy Storage Materials in an Immiscible Fluid. International Journal of Energy Resources. 1983, no. 2, vol. 7, p. 25.
  3. Lu Changgeng. Industrial Production of Concrete Components in China. Betonwerk+Fertigteil-Technik (Concrete Precasting Plant and Technology), 1986, no. 5, p. 56.
  4. Malhotra V.M. In-place Evaluation of Concrete. Jour. of Constr. Div. Proc. of Am. Soc. of Civ. Engr. 1975, vol. 101, p. 45.
  5. Krylov B.A., Zasedatelev I.B., Malinskiy E.N. Izgotovlenie sbornogo zhelezobetona s primeneniem gelioform [Production of Prefab Reinforced Concrete Using Solar Hardening Forms]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 1984, no. 3, pp. 17—18.
  6. Krylov B.A., Chkuaselidze L.G., Topil’skiy G.V., Rybasov V.P. Vododispersionnye plenkoobrazuyushchie sostavy dlya betona v usloviyakh sukhogo zharkogo klimata [Water-dispersible Film-forming Concrete Compositions in Hot Dry Climates]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 1992, no. 6, p. 15.
  7. Krylov B.A., Zvezdov A.I. Vliyanie temperatury na ego strukturu i tverdenie [Temperature Influence on Concrete Structure and Hardening]. International Symposium in Japan E&FN Spook. 1995, vol. 2, pp. 917—925.
  8. Abhat A. Low Temperature Latent Heat Thermal Energy Storage. Heat Storage Materials. Solar Energy. 1983, no. 4, vol. 30, p. 65.
  9. Commission 42-CEA. Properties Set Concrete at Early Ages. State-of-the-art-report. Materiaux et Constructions. 1981, no. 84, vol. 14, p. 15.
  10. Kalt A.C. Speicherung Thermischer Energie in Anlagen dur Nulzung der Sonnenenergie. Oel+Gasfeuerung. 1980, no. 11, vol. 25, p. 55.


Results 1 - 1 of 1