RESEARCH OF BUILDING MATERIALS

INFLUENCE OF WATER-TO-CEMENT RATIO ON AIR ENTRAILMENT IN PRODUCTION OF NON-AUTOCLAVED FOAM CONCRETE USING TURBULENCE CAVITATION TECHNOLOGY

Vestnik MGSU 10/2012
  • Gorshkov Pavel Vladimirovich - Ivanovo State University of Architecture and Civil Engineering (ISUACE) postgraduate student, Department of Engineering Structures, Ivanovo State University of Architecture and Civil Engineering (ISUACE), 20 8ogo Marta St., Ivanovo, 153037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 154 - 158

Non-autoclaved foam concrete is an advanced thermal insulation material. Until recently, foam concrete production has been based on separate preparation of foam and solution, followed by their blending in a mixer. The situation changed when high-quality synthetic foaming agents and turbulence cavitation technology appeared on the market. Every model provides a dependence between the foam concrete strength and the water-to-cement ratio. According to the water-cement ratio we can distinguish strong concrete mixtures (with the water-to-cement ratio equal to 0.3…0.4) and ductile ones (with the water-to-cement ratio equal to 0.5…0.7). Strong concrete mixtures are more durable. The lower the water-to-cement ratio, the higher the foam concrete strength.
However super-plastic substances cannot be mixed by ordinary turbulent mixers. Foam concrete produced using the turbulence cavitation technology needs air-entraining, its intensity being dependent on several factors. One of the main factors is the amount of free water, if it is insufficient, the mixture will not be porous enough. A researcher needs to identify the optimal water-to-cement ratio based on the water consumption rate. Practical production of prefabricated concrete products and structures has proven that the reduction of the water-to-cement ratio improves the strength of the product. The task is to find the water-to-cement ratio for the foam concrete mixture to be plastic enough for air entraining. An increase in the ratio causes loss in the strength. The ratio shall vary within one hundredth points. Super-plasticizers are an alternative solution.

DOI: 10.22227/1997-0935.2012.10.154 - 158

References
  1. Babkov V.V., Bazhenov Yu.M., Bykova A.A. Tsementy, betony, stroitel’nye rastvory i sukhie smesi [Cements, Concretes, Mortars and Dry Mixes]. St.Petersburg, NPO Professional Publ., 2007, Part I, 804 p.
  2. GOST 25485—89. Betony yacheistye tekhnicheskie usloviya [Cellular Concretes. Specifi cations].
  3. Gorshkov P.V. Penobeton i ego rol’ v sovremennom stroitel’stve [Foam Concrete and Its Role in Contemporary Construction]. Informatsionnaya sreda VUZa [Information Environment of Institutions of Higher Education]. Ivanovo, 2011, no. 17, pp. 507—510.
  4. Spravochnik stroitelya. Stroitel’naya tekhnika, konstruktsii i tekhnologii [Builder’s Reference Book. Machinery, Structures and Technologies]. Moscow, 2007, Tekhnosfera Publ., vol. 1, 520 p.
  5. Kholmyanskiy M.M. Beton i zhelezobeton: deformativnost’ i prochnost’ [Concrete and Reinforced Concrete: Deformability and Strength]. Moscow, Stroyizdat Publ., 1997, 576 p.
  6. Merkin A.P., Zayfman M.I. Seriya 8. Promyshlennost’ avtoklavnykh materialov i mestnykh vyazhushchikh [Series 8. Production of Autoclaved Materials and Local Binders]. Moscow, VNIIESM Publ., 1982, no. 2.
  7. Muradov E. G. Materialy dlya prigotovleniya betonnoy smesi i stroitel’nogo rastvora [Materials for Preparation of a Concrete Mix and Building Mortar]. Moscow, Vyssh. shk. publ., 1987, 110 p.
  8. Ruzhinskiy S.I. Vse o penobetone [Everything about Foam Concrete]. St.Petersburg, Stroy Beton Publ., 2006, 630 p.
  9. Evdokimov N.I., Matskevich A.F., Sytnik V.S. Tekhnologiya monolitnogo betona i zhelezobetona [Technology of In-situ Concrete and Reinforced Concrete]. Moscow, Vyssh. shk. publ., 1980, 355 p.
  10. Nevill’ A.M. Svoystva betona [Properties of Concrete]. Moscow, Izd-vo literatury po stroitel’stvu publ., 1972, 344 p.

Download

Areas of use of interacting swirl liquid and gas flows

Vestnik MGSU 7/2015
  • Volshanik Valeriy Valentinovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Professor, Department of Hydroelectric Engineering and Use of Aquatic Resource, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Orekhov Genrikh Vasil’evich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Chair, Department of Hydroelectric Engineering and Use of Aquatic Resources; +7 (499) 182-99-58, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 87-104

Swirled flows of liquid and gas are widely used in modern technology because of many of their unique aerodynamic, thermodynamic, and hydro-mechanical qualities. They are used for spraying liquid fuel mixing and dispersing liquid, aerosol formation, formation of the flame, classification of disperse materials and drying, dehydration, deaeration, cooling and heating, distillation and purification (rectification of working fluids), ash and dust-collecting, generating vapor separation of suspensions, absorption materials, separation materials, excitation of mechanical vibrations and formation of a sound signal, transportation of materials and many other technological purposes. The proposals for the use of interacting (counter vortex) swirling flows were caused by the requirements of the practice of mixing fluids and gases and quenching of excess kinetic energy of the high-speed flow of water in the high-pressure hydro spillways. The method for energy dissipation by reacting flows (jets) I based on the idea of separating the stream into parts and creating the conditions for mutual energy damping of individual parts of during subsequent reunification. As it is known, while moving from the upper pool to the lower one the water flow may dampen its energy performing useful work on the hydraulic turbines or overcoming the reaction forces, which arise when passing through the dampers. The energy of one part of a stream in interaction with the energy of the other part is used for creating the forces equivalent to the jet forces developed by quenchers. Such interaction can give the best effect in the conditions of rational breakdown of a stream and creation of the respective movement directions of its parts in relation to each other. In the cylindrical camera of counter vortex devices coaxial flows are formed consisting of two or more oppositely swirling flows of liquid or gas, the interaction of which can convert practically the whole mechanical energy source of the interacting flows into excess turbulence energy. The nature and intensity of hydro-mechanical, aerodynamic and mechanical processes occurring in the counter vortex devices provide the efficiency of their application in various branches of modern technology for mixing of single-phase and multiphase media, quenching the excess mechanical energy of the flow of liquid and gas, for disintegration of conglomerates, creating a homogeneous systems, excitation of mechanical vibrations and obtaining other effects. Authors due to the nature of their activity paid the main attention to the development, researches and creation of the designs of counter vortex quenchers of spillways energy of high-pressure water-engineering systems and counter vortex aerators of different purpose. Counter vortex devices have been tested for other purposes (homogenizer, flotators), protected by patents or circuit diagram are proposed for them.

DOI: 10.22227/1997-0935.2015.7.87-104

References
  1. Volshanik V.V., Zuykov A.L., Eliseev N.A., Konovalov E.S., Krivchenko G.I., Levanov A.V., Mordasov A.P., Pravdivets Yu.P. Rezhimy raboty krupnomasshtabnoy modeli kontrvikhrevogo gasitelya [Modes of Operation of Large-Scale Models of Counter Vortex Damper]. Metody issledovaniy i gidravlicheskikh raschetov vodosbrosnykh gidrotekhnicheskikh sooruzheniy : materialy konferentsii i soveshchaniya po gidrotekhnike [Materials of the Conference and Meeting “Research Methods and Hydraulic Calculations of Intakes of Hydraulic Structures”]. Leningrad, Energoatomizdat Publ., 1985, pp. 154—157. (In Russian)
  2. Volshanik V.V., Zuykov A.L., Mordasov A.P., Krivchenko G.I. Zakruchennye potoki v gidrotekhnicheskikh sooruzheniyakh [Swirl Flows in Hydraulic Structures]. Saint Petersburg, Energoatomizdat Publ., 1990, 280 p. (In Russian)
  3. Volshanik V.V.‚ Mordasov A.P., Zuykov A.L. Proekty ispol’zovaniya zakruchennykh potokov v vysokonapornykh vodosbrosakh [Projects of Use of Swirling Spillway in High-Pressure Outlets]. Gidrotekhnika i melioratsiya [Hydraulic Engineering and Land Reclamation]. 1983, no. 8, pp. 3—7. (In Russian)
  4. Volshanik V.V., Zuykov A.L.‚ Orekhov G.V.‚ Churin P.S. Propusk kholostykh raskhodov cherez turbinnyy blok sredne- ili vysokonapornoy GES. Ch. 1 [Skip of Idling Consumption through the Turbine Unit of a Medium or High Pressure HPS. Part 1]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 2013, no. 4, pp. 51—56. (In Russian)
  5. Zuykov A.P.‚ Volshanik V.V.‚ Mordasov A.P. Primenenie kontrvikhrevykh ustroystv dlya gasheniya energii vysokoskorostnykh potokov vody i aeratsii zhidkostey [Application of Counter Vortex Devices for Energy Dissipation of High-Speed Streams of Water and Aeration of Liquids]. Trudy I nauchnoy konferentsii Politekhnicheskogo instituta [Proceedings of the First Scientific Conference of the Polytechnic Institute]. Brno, Chekhoslovakiya. 1989, vol. 16, pp. 90—94. (In Russian)
  6. Zuykov A.L., Krivchenko G.I., Mordasov A.P. Vysokonapornye vodosbrosnye sistemy s vikhrevymi i kontrvikhrevymi ustroystvami i praktika gidrotekhnicheskogo stroitel’stva [High-pressure Waste Water Systems with Vortex and Counter Vortex Devices and Practice of Hydrotechnical Construction]. Razvitie gidroenergetiki SSSR v XII pyatiletke : trudy Vsesoyuznogo nauchno-tekhnicheskogo soveshchaniya [Proceedings of the All-Union Scientific and Technical Meeting “The Development of Hydropower in the 12th Five-Year Plan of the USSR]. Sayanogorsk, 1988. (In Russian)
  7. Zuykov A.L., Chepaykin G.A. Issledovaniya modeli vysokonapornogo glubinnogo vodosbrosa so vzaimodeystviem kontsentricheskikh zakruchennykh potokov [Studies of High-Pressure Deep Spillway Model in Interaction of Concentric Swirling Flows]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 1986, no. 12, pp. 29—33. (In Russian)
  8. Karelin V.Ya.‚ Krivchenko G.I., Volshanik V.V.‚ Mordasov A.P., Zuykov A.L. Ispol’zovanie zakruchennykh potokov dlya zashchity ot kavitatsii v vysokonapornykh vodosbrosnykh sistemakh [Using Swirl Flows for Cavitation Protection in High-Pressure Intake Systems]. Trudy Mezhdunarodnogo simpoziuma po kavitatsii [Proceedings of the International Symposium on Cavitation]. Sendai, Japan, 1986, pp. 287—291. (In Russian)
  9. Krivchenko G.I., Mordasov A.P., Kvyatkovskaya E.V.‚ Volshanik B.B., Zuykov A.L. Vysokonapornaya vodosbrosnaya sistema s kontrvikhrevym gasitelem energii potoka vody [High-Pressure Wastewater System with a Counter Vortex Quencher of Water Flow Energy]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 1981, no. 10, pp. 29—31. (In Russian)
  10. Krivchenko G.I., Kvyatkovskaya E.V.‚ Mordasov A.P., Volshanik V.V., Zuykov A.L. Vysokonapornye vodosbrosnye sistemy s kontrvikhrevymi gasitelyami energii potoka [High Pressure Water Discharge System with Counter Vortex Absorbers of Flow Energy]. Tezisy dokladov IV nauchno-tekhnicheskogo soveshchaniya Gidroproekta [Abstracts of the 4th Scientific and Technical Meeting of the Hydroproject]. Moscow, 1982, pp. 41—42. (In Russian)
  11. Krivchenko G.I., Kvyatkovskaya E.V., Mordasov A.P., Volshanik V.V.‚ Zuykov A.L. Shakhtnyy vikhrevoy vodosbros s kontrvikhrevym gasitelem dlya vysokonapornykh gidrouzlov [Mine Vortex Spillway With a Countervortex Absorber for High-Pressure Water-Engineering Systems]. Trudy Moskovskogo inzhenerno-stroitel’nogo instituta [Works of the Moscow Construction Institute]. Moscow, MISI Publ., 1983, no. 189, pp. 151—157. (In Russian)
  12. Krivchenko G.I., Mordasov A.P., Kvyatkovskaya E.V., Volshanik B.B., Zuykov A.L.‚ Levanov A.V. Gasiteli energii vysokonapornykh vodosbrosnykh sooruzheniy, osnovannye na vzaimodeystvii soosnykh zakruchennykh potokov [Absorbers of High-Energy Intakes and Facilities Based on the Interaction of Coaxial Swirling Flows]. Trudy XX Kongressa Mezhdunarodnoy assotsiatsii po gidravlicheskim issledovaniyam [Proceedings of the 20th Congress of the International Association for Hydraulic Research]. Moscow, 1983, vol. 7, pp. 464—467. (In Russian)
  13. Slisskiy C.M., Mordasov A.P., Pravdivets Yu.P.‚ Laktionova E.A., Kuznetsova E.V., Naymark L.I. Gidravlicheskie issledovaniya kontrvikhrevogo gasitelya [Hydraulic Studies of Counter Vortex Absorber]. Energeticheskoe stroitel’stvo [Energy Construction]. 1984, no. 10, pp. 47—49. (In Russian)
  14. Krivchenko G.I., Kvyatkovskaya E.V., Volshanik V.V., Zuykov A.L. A. s. na izobretenie SSSR № 812876, MKI E02V8/06. Sposob gasheniya energii potoka [Certificate of authorship of the USSR no. 812876, MKI E02V8/06. Way of Energy Dissipation]. Zayavka № 2754985/29-15 ; zayavl. 20.04.1979 ; opubl. 15.03.1981. Byul. № 10 [Notice no. 2754985/29-15 ; appl. 20.04.1979 ; publ. 15.03.1981. Bulletin no. 10]. Pp. 111—112. (In Russian)
  15. Krivchenko G.I., Kvyatkovskaya E.V., Mordasov A.P., Volshanik V.V., Zuykov A.L. A. s. na izobretenie SSSR № 812877, MKI E02V8/06. Vodosbrosnoe ustroystvo [Certificate of authorship of the USSR no. 812877, MKI E02V8/06. Spillway Device]. Zayavka № 2766983/29-15 ; zayavl. 17.05.1979 ; opubl. 15.03.1981. Byul. № 10 [Notice no. 2766983/29-15 ; appl. 17.05.1979 ; publ. 15.03.1981. Bulletin no. 10, p. 112. (In Russian)
  16. Mordasov A.P., Zhivotovskiy B.A. A. s. na izobretenie SSSR № 819254, MKI E02V8/06. Vodosbrosnoe ustroystvo [Certificate of authorship of the USSR no. 819254, MKI E02V8/06. Spillway Device]. Zayavka № 2783220/29-15 ; zayavl. 20.06.1979 ; opubl. 07.04.1981. Byul. № 13 [Notice no. 2783220/29-15 ; appl. 20.06.1979 ; publ. 07.04.1981. Bulletin no. 13]. P. 119. (In Russian)
  17. Krivchenko G.I., Kuperman V.L., Kvyatkovskaya E.V., Mordasov A.P., Volshanik V.V., Zuykov A.L. A. s. na izobretenie SSSR № 874853, MKI E02V8/06. Gasitel’ energii potoka vody [Certificate of authorship of the USSR no. 874853, MKI E02V8/06. Energy Dissipating Device]. Zayavka № 2924103/29-15 ; zayavl. 23.10.1980 ; opubl. 29.05.1981. Byul. № 39 [Notice no. 2924103/29-15 ; appl. 23.10.1980 ; publ. 29.05.1981. Bulletin no. 39]. P. 161. (In Russian)
  18. Krivchenko G.I., Kvyatkovskaya E.V., Mordasov A.P., Volshanik V.V., Zuykov A.L. A. s. na izobretenie SSSR № 920099, MKI E02V8/06. Vodosbrosnoe ustroystvo [Certificate of authorship of the USSR no. 920099, MKI E02V8/06. Spillway Device]. Zayavka № 2787006/29-15 ; zayavl. 29.06.1979 ; opubl. 15.04.1982. Byul. № 14 [Notice no. 2787006/29-15 ; appl. 29.06.1979 ; publ. 15.04.1982. Bulletin no. 14]. P. 91. (In Russian)
  19. Mordasov A.P., Volshanik V.V, Zuykov A.L. A. s. na izobretenie SSSR № 924233, MKI E02V8/06. Vodosbrosnoe ustroystvo i ego variant [Certificate of Authorship of the USSR no. 924233, MKI E02V8/06. Spillway Device and its Variant]. Zayavka № 3226699 ; zayavl. 30.12.1980 ; opubl. 30.04.1982. Byul. № 16 [Notice no. 3226699 ; appl. 30.12.1980 ; publ. 30.04.1982. Bulletin no. 16]. P. 140. (In Russian)
  20. Chepaykin G.A., Redchenko I.S., Zuykov A.L. A. s. na izobretenie SSSR № 1010184, MPK E02V8/06. Sposob gasheniya energii potoka [Certificate of authorship of the USSR no. 1010184, MKI E02V8/06. Way of Energy Dissipation]. Zayavka № 3217678/29-15 ; zayavl. 19.11.1980 ; opubl. 07.04.1983. Byul. № 13 [Notice no. 3217678/29-15 ; appl. 19.11.1980 ; publ. 07.04.1983. Bulletin no. 13]. P. 179. (In Russian)
  21. Krivchenko G.I., Slisskiy S.M., Mordasov A.P., Pravdivets Yu.P., Kvyatkovskaya E.V., Volshanik V.V., Zuykov A.L., Levanov A.V. A. s. na izobretenie SSSR № 1233548, MPK A01K63/04. Gasitel’ energii potoka glubinnogo vodosbrosa [Certificate of authorship of the USSR no. 1233548, MPK A01K63/04. Way of Energy Dissipation of Bottomwater Outlet]. Zayavka № 3641463; zayavl. 14.09.1983 ; opubl. 30.05.1989. Byul. № 20 [Notice no. 3641463; appl. 14.09.1983 ; publ. 30.05.1989. Bulletin no. 20. (In Russian)
  22. Volshanik V.V., Zuykov A.L., Orekhov G.V., Churin P.S. Pat. № 2483158 RF, MPK V02V8/06. Vikhrevoy vodosbros [Russian Patent no. 2483158 RF, MPK V02V8/06. Vortex Water Disposal]. Zayavka № 2011140562/13 ; zayavl. 06.10.2011 ; opubl. 27.05.2013. Byul. № 15 [Notice no. 2011140562/13 ; appl. 06.10.2011 ; publ. 27.05.2013. Bulletin no. 15]. Patent holder FGBOU VPO MGSU, 11 p. (In Russian)
  23. Mordasov A.P., Volshanik V.V., Zuykov A.L., Levanov A.V. A. s. na izobretenie SSSR № 1073489, MPK F01N1/06. Glushitel’ shuma gazovogo potoka [Certificate of authorship of the USSR no. 1073489, MPK F01N1/06. Gas Flow Noise Suppressor]. Zayavka № 3504045/25-06 ; zayavl. 26.10.1982 ; opubl. 15.02.1984. Byul. № 6 [Notice no. 3504045/25-06 ; appl. 26.10.1982 ; publ. 15.02.1984. Bulletin no. 6]. 118 p. (In Russian)
  24. Volshanik V.V., Zuykov A.L., Skatkin M.G. Pat. № 2206378 RF, MPK V0F5/04. Universal’nyy smesitel’ [Russian Patent no. 2206378 RF, MPK V0F5/04. Multimixer]. Zayavka № 2001130700/12 ; zayavl. 14.11.2001 ; opubl. 20.06.2003. Byul. № 17 [Notice no. 2001130700/12 ; appl. 14.11.2001 ; publ. 20.06.2003. Bulletin no. 17]. P. 620. (In Russian)
  25. Mordasov A.P., Volshanik V.V., Zuykov A.L. A. s. na izobretenie SSSR № 856415, MPK A01K63/04. Ustroystvo dlya aeratsii vody v rybovodnykh vodoemakh [Certificate of authorship of the USSR no. 856415, MPK A01K63/04. Device for Water Aeration in Fish-Breeding Basins]. Zayavka № 2840145 ; zayavl. 11.11.1979 ; opubl. 23.08.1981. Byul. № 31 [Notice no. 2840145 ; appl. 11.11.1979 ; publ. 23.08.1981. Bulletin no. 31]. 5 p. (In Russian)
  26. Volshanik V.V., Mordasov A.P., Kan S.V., Meshchankin G.I., Popov V.G., Grigoryan A.N.,Litmans B.A., Krasnolutskaya T.I., Gorkin Yu.A., Yur’evich Yu.I. A. s. na izobretenie SSSR № 1143076, MPK A01K63/04. Apparat dlya vyrashchivaniya mikroorganizmov (i ego varianty) [Certificate of authorship of the USSR no. 1143076, MPK A01K63/04. Device for Microorganisms Breeding (and Its Variants]. Zayavka № 3628255 ; zayavl. 22.07.83 [Notice no. 3628255 ;appl. 22.07.83. (In Russian)
  27. Mordasov A.P., Volshanik V.V., Zuykov A.L. A. s. na izobretenie SSSR № 963362, MKI E02V8/06. Dvukhkomponentnaya forsunka [Certificate of authorship of the USSR no. 963362, MKI E02V8/06. Doublet Injector]. No. 3226249 ; appl. 30.12.80. (In Russian)
  28. Mordasov A.P., Volshanik V.V., Zuykov A.L., Levanov A.V. A. s. na izobretenie SSSR № 1083684, MPK A01K63/04. Reaktivnyy dvigatel’ [Certificate of authorship of the USSR no. 1083684, MPK A01K63/04. Jet Engine]. Zayavka № 3504044 ; zayavl. 26.10.82 [Notice no. 3504044 ; appl. 26.10.82. (In Russian)
  29. Mordasov A.P., Volshanik V.V., Zuykov A.L., Levanov A.V. A. s. na izobretenie SSSR № 1188498, MPK F28C1/00. Gradirnya [Certificate of authorship of the USSR no. 1188498, MPK F28C1/00. Water Cooling Tower]. Zayavka № 3552449/24-06 ; zayavl. 09.02.1983 ;opubl. 30.10.1985. Byul. № 40 [Notice no. 3552449/24-06 ; appl. 09.02.1983 ; publ. 30.10.1985. Bulletin no. 40]. P. 147. (In Russian)
  30. Mordasov A.P., Volshanik V.V., Zuykov A.L., Levanov A.V., Khodankov N.A. A. s. na izobretenie SSSR № 1467350, MPK F28C1/00. Gradirnya [Certificate of authorship of the USSR no. 1467350, MPK F28C1/00. Water Cooling Tower] № 4288989 ; zayavl. 22.07.1987; opubl. 23.03.1989. Byul. № 11 [No. 4288989 ; appll. 22.07.1987; publ. 23.03.1989. Bulletin no. 11]. P. 27. (In Russian)
  31. Bogdanov V.M., Borovkov V.S., Volshanik V.V. Ochistka bol’shogo pruda moskovskogo zooparka sistemoy zamknutogo vodooborota i struyno-vikhrevoy aeratsii [Cleaning the Large Pond of the Moscow Zoo by Closed Water System and the Swirling Jet Aeration]. Chistyy gorod [Clean City]. 2000, no. 1, pp. 42—48. (In Russian)
  32. Boykova I.G., Volshanik V.V., Karpova N.B., Pechnikov V.G., Pupyrev E.I. Ekspluatatsiya, rekonstruktsiya i okhrana vodnykh ob
  33. Borovkov V.S.‚ Volshanik V.V. Kompleksnye tekhnologii rekonstruktsii gorodskikh vodnykh ob
  34. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka [Building Materials, Equipment and Technologies of the 21st Century]. 2003, no. 8 (55), pp. 44—55. (In Russian)
  35. Borovkov V.S., Volshanik V.V., Karelin V.Ya., Pupyrev E.I., Bayaraa U. Sistemy podderzhaniya kachestva vody v gorodskikh vodnykh ob
  36. Borovkov V.S.‚ Volshanik V.V.‚ Orekhov G.V. Inzhenernaya sistema podderzhaniya kachestva vody v gorodskikh vodnykh ob
  37. Borovkov V.S., Volshanik V.V., Orekhov G.V. Oborudovanie i vysokoeffektivnye tekhnologii vosstanavlivaniya i ekspluatatsii gorodskikh vodnykh ob
  38. Borovkov V.S., Volshanik V.V., Orekhov G.V. Tekhnologii podderzhaniya samoochishchayushchey sposobnosti vody v gorodskikh vodnykh ob
  39. Volshanik V.V.‚ Orekhov G.V. Defitsit rastvorennogo kisloroda v vodoemakh na selitebnykh territoriyakh i sistemy iskusstvennoy aeratsii i zamknutogo vodooborota [Deficiency of Dissolved Oxygen in Ponds in Residential Areas and Artificial Aeration Systems and Closed Water Rotation]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2008, no. 1, pp. 243—246. (In Russian)
  40. Gidravlicheskie raschety vodosbrosnykh gidrotekhnicheskikh sooruzheniy : spravochnoe posobie [Hydraulic Calculations of Waterworks Intakes : Reference Book]. Moscow, Energoatomizdat Publ., 1988, pp. 233—248. (In Russian)
  41. Zuykov A.L. Gidrodinamika tsirkulyatsionnykh techeniy [Hydrodynamics of Circulating Currents]. Moscow, ASV Publ.‚ 2010, 216 p. (In Russian)
  42. Orekhov G.V. Vodnye ob’ekty na urbanizirovannykh territoriyakh i inzhenernye sistemy aeratsii i zamknutogo vodooborota [Water Objects in Urban Areas and Engineering of the Aeration System and Closed Water Rotation]. Ekologiya urbanizirovannykh territoriy [Ecology of Urbanized Territories]. 2008, no. 2, pp. 88—93. (In Russian)
  43. Orekhov G.V. Gidromekhanicheskiy sposob uluchsheniya kachestva vody v vodnykh ob’ektakh [Hydromechanical Way to Improve Water Quality in Water Objects]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2008, no. 4, pp. 175—180. (In Russian)
  44. Borovkov V.S., Volshanik V.V., Orekhov G.V. Opyt klassifikatsii gorodskikh vodnykh o’ektov po geneticheskim i inzhenerno-ekologicheskim priznakam [Experience of Urban Water Objects Classification according to Genetic and Engineering-Environmental Grounds]. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka [Construction Materials, Equipment, Technologies of the 21st Century]. 2004, no. 4 (63), pp. 62—65. (In Russian)
  45. Akhmedov V.K.‚ Volshanik V.V. Raschet techeniy s vozvratnymi zonami v kamere otstoynika [Calculation of Flows with Reverse Zones in Settling Basin]. 1996, no. 5, pp. 29—31. (In Russian)
  46. Borovkov V.S., Volshanik V.V., Galant M.A., Dorkina I.V., Karelin V.Ya. Inzhenernaya sistema podderzhaniya kachestva vody prudov Lefortovskogo parka [Engineering System to Maintain Water Quality in the Ponds of Lefortovo Park]. Vestnik Otdeleniya stroitel’nykh nauk Rossiyskoy akademii arkhitektury i stroitel’nykh nauk [Bulletin of the Department of Civil Engineering of the Russian Academy of Architecture and Construction Sciences]. 2001, no. 4, pp. 28—38. (In Russian)
  47. Borovkov V.S., Volshanik V.V., Orekhov G.V. Inzhenernye sistemy vodooborota i aeratsii dlya ochistki vody v gorodskikh vodnykh ob
  48. Borovkov V.S., Volshanik V.V., Orekhov G.V. Inzhenernye sistemy zamknutogo vodooborota dlya intensifikatsii protsessov samoochishcheniya vody v gorodskikh vodnykh ob
  49. Volshanik V.V., Aniskin N.N. Ob ispol’zovanii aktivnykh gidrodinamicheskikh rezhimov pri iskusstvennoy aeratsii stochnykh vod [On the Use of Active Hydrodynamic Regimes for Artificial Aeration of Wastewater]. Sozdanie i vnedrenie sovremennykh apparatov s aktivnymi gidrodinamicheskimi rezhimami dlya tekstil’noy promyshlennosti i proizvodstva khimicheskikh volokon : tezisy dokladov Vsesoyuznoy konferentsii (14—16 noyabrya 1989 g.) [Abstracts of the All-Union conference “Development and Implementation of Modern Devices with Active Hydrodynamic Regimes for the Textile Industry and Production of Chemical Fibers]. Moscow, 1989, pp. 147—148. (In Russian)
  50. Volshanik V.V. Zuykov A.L., Karelin V.Ya., Orekhov G.V. Vikhrevye aeratory — printsip deystviya i konstruktsii [Swirl Aerators — Action Principle and Design]. Sbornik nauchnykh trudov MGSU [Collection of Scientific Papers of Moscow State University of Civil Engineering]. Moscow, MGSU Publ., 2001, pp. 95—101. (In Russian)
  51. Volshanik V.V., Zuykov A.L.‚ Orekhov G.V.‚ Bayaraa U. Osobennosti rabochego protsessa kontrvikhrevykh aeratorov i zadachi ikh gidravlicheskikh issledovaniy [Features of the Working Process of Counter Vortex Aerators and Objectives of Hydraulic Studies]. Ekologiya urbanizirovannykh territoriy [Ecology of Urbanized Territories]. 2013, no. 2, pp. 74—80. (In Russian)
  52. Volshanik V.V., 3uykov A.L.‚ Orekhov G.V.‚ Bayaraa U. Raskhod vody i ezhektsiya vozdukha v kontrvikhrevom aeratore [Water Consumption and Air Ejection in Counter Vortex Aerator]. Ekologiya urbanizirovannykh territoriy [Ecology of Urbanized Territories]. 2014, no. 2, pp. 33—40. (In Russian)
  53. Volshanik V.V., Zuykov A.L., Orekhov G.V., Bayaraa U. Techenie v kamere smesheniya kontrvikhrevogo aeratora [The Flow in the Mixing Chamber of Counter Vortex Aerator]. Ekologiya urbanizirovannykh territoriy [Ecology of Urbanized Territories]. 2015, no. 1, pp. 23—28. (In Russian)
  54. Volshanik V.V., Zuykov A.L., Orekhov G.V., Svitaylo V.D.‚ Skatkin M.G. Ispol’zovanie vikhrevykh aeratorov dlya intensifikatsii protsessov ochistki prirodnykh vod [Using Vortex Aerators for Intensifying the Processes for Wastewater Treatment]. Inzhenernaya zashchita okruzhayushchey sredy. Ochistka vod. Utilizatsiya otkhodov [Engineering Protection of the Environment. Water Purification. Waste Disposal]. Moscow, ASV Publ., 2002, pp. 97—106. (In Russian)
  55. Volshanik V.V., Mordasov A.P.‚ Akhmetov B.K. Ekologicheskaya effektivnost’ primeneniya struyno-vikhrevykh aeratorov po rezul’tatam model’nykh i naturnykh ispytaniy [Environmental Efficiency of Jet Vortex Aerators according To the Results of Modeling and Field Tests]. Fizicheskoe i matematicheskoe modelirovanie gidravlicheskikh protsessov : tezisy nauchno-tekhnicheskogo soveshchaniya [Abstracts of Scientific-Technical Conference “Physical And Mathematical Modeling of Hydraulic Processes”]. Divnogorsk, 1989, pp. 62—63. (In Russian)
  56. Volshanik V.V.‚ Mordasov A.P.‚ Ivanova T.A., Krotova A.V., Savina M.M. Gidravlicheskiy raschet kontrvikhrevykh aeratorov i zadachi standartizatsii ikh konstruktsiy [Hydraulic Calculation of Counter Vortex Aerators and Objectives of Standardization of Their Designs]. Trudy XI Mezhdunarodnogo nauchnogo simpoziuma studentov, molodykh nauchnykh rabotnikov [Proceedings of the 11th International Scientific Symposium of Students, Young Scientists]. Zielona Gora, Poland, 1989, pp. 206—211. (In Russian)
  57. Volshanik V.V.‚ Mordasov A.P.‚ Orekhov G.V. Proekty kontrvikhrevykh aeratorov dlya povysheniya kachestva vody v vodokhranilishchakh [Projects of Counter Vortex Aerators to Improve Water Quality in Reservoirs]. Sostoyanie i perspektivy razvitiya gidroenergetiki : tezisy Vsesoyuznogo soveshchaniya. Sayano-Shushenskaya GES. 14—16 sentyabrya 1988 [Abstracts of All-Union Conference “Status and Development Prospects of Hydropower”. September 14—16, 1988]. (In Russian)
  58. Volshanik V.V., Pogorelov A.E. Primenenie kontrvikhrevykh aeratorov v kachestve ustroystva podachi i smesheniya koagulyanta [Applying Counter Vortex Diffusers as Feeder and Mixing the Coagulant]. Proekty razvitiya infrastruktury goroda. Proektirovanie gorodskikh inzhenernykh sistem : sbornik nauchnykh trudov [Collection of Scientific Works “Infrastructure Projects of the City”]. Moscow, Prima-press Ekspo Publ., 2010, no. 10, pp. 54—58. (In Russian)
  59. Karelin V.Ya.‚ Volshanik B.B., Zuykov A.L., Orekhov G.V. Eksperimental’noe obosnovanie optimal’noy formy protochnoy polosti vikhrevogo aeratora [Experimental Substantiation of the Optimal Cavity Form of the Vortex Flow Aerator]. Vestnik Otdeleniya stroitel’nykh nauk Rossiyskoy akademii arkhitektury i stroitel’nykh nauk [Bulletin of the Department of Civil Engineering of the Russian Academy of Architecture and Construction Sciences]. 2005, no. 9, pp. 229—237. (In Russian)
  60. Akhmetov B.K., Volshanik V.V., Zuykov A.L., Orekhov G.V. Modelirovanie i raschet kontrvikhrevykh techeniy [Modeling and Calculation of Counter Vortex Currents]. Moscow, MGSU Publ., 2012, 252 p. (In Russian)
  61. Karelin V.Ya., Volshanik V.V., Zuykov A.L. Nauchnoe obosnovanie i tekhnicheskoe ispol’zovanie effekta vzaimodeystviya zakruchennykh potokov [Scientific Substantiation and Technical Use of the Synergies of Swirling Flows]. Vestnik Otdeleniya stroitel’nykh nauk Rossiyskoy akademii arkhitektury i stroitel’nykh nauk [Bulletin of the Department of Civil Engineering of the Russian Academy of Architecture and Construction Sciences]. 2000, no. 3, pp. 37—44. (In Russian)
  62. Volshanik V.V., Zuykov A.L., Karelin V.Ya., Mordasov A.P., Orekhov G.V. Kontrvikhrevye ustroystva dlya intensifikatsii protsessov peremeshivaniya, masso- i teploobmena, gasheniya energii, dezintegratsii konglomeratov. Chast’ 2 [Counter Vortex Devices for Intensification of the Processes of Mixing, Heat and Mass Transfer, Energy Dissipation, Disintegration of Conglomerates. Part 2]. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka [Construction Materials, Equipment and Technologies of the 21st Century]. 2004, no. 09 (68), pp. 44—45. (In Russian)
  63. Volshanik V.V.‚ Zuykov A.L., Orekhov G.V. Gidravlicheskiy raschet protochnoy chasti kontrvikhrevykh aeratorov [Hydraulic Calculation of the Flowing Part of Counter Vortex Aerators]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Technique]. 2009, no. 12, pp. 50—56. (In Russian)
  64. Volshanik V.V.‚ Orekhov G.V., Zuykov A.L., Karelin V.Ya. Inzhenernaya gidravlika zakruchennykh potokov zhidkosti [Engineering Hydraulics of Swirling Flow]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 2000, no. 11, pp. 23—26. (In Russian)
  65. Volshanik V.V.‚ Zuykov A.L., Orekhov G.V. Tsirkulyatsionnye techeniya v nauke i tekhnike [Circulating Currents in Science and Technology]. Delovaya slava Rossii [Business Glory of Russia]. 2011, no. 2 (30), pp. 48—50. (In Russian)
  66. Volshanik V.V., Danek M., Zuykov A.L.‚ Mordasov A.P.‚ Rybnikar I. Gidravlicheskiy raschet gidrotekhnicheskikh sooruzheniy s zakrutkoy potoka [Hydraulic Calculation of Hydraulic Structures with Flow Swirl]. Moscow, MISI Publ., 1992, 64 p. (In Russian)
  67. Mordasov A.P.‚ Volshanik V.V., Zuykov A.L., Levanov A.B. Ispol’zovanie vzaimodeystvuyushchikh zakruchennykh potokov v reshenii problem zashchity okruzhayushchey sredy [Using Interacting Swirling Flows in Addressing Environmental Problems]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo i arkhitektura [News of the Institutions of Higher Education. Construction and Architecture]. 1984, no. 8, pp. 97—101. (In Russian)
  68. Orekhov G.V.‚ Zuykov A.L., Volshanik V.V. Kontrvikhrevoe polzushchee techenie [Counter Vortex Creeping Flow]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 4, pp. 172—180. (In Russian)
  69. Zuykov A.L., Orekhov G.V., Volshanik V.V. Model’ techeniya Gromeki — Bel’trami [Analytical Model of Gromeka — Beltrami Flow]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 4, pp. 150—159. (In Russian)
  70. Zuykov A.L., Orekhov G.V., Volshanik V.V. Raspredelenie azimutal’nykh skorostey v laminarnom kontrvikhrevom techenii [Distribution of Azimuthal Velocities in a Laminar Counter Vortex Flow]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 5, pp. 150—161. (In Russian)
  71. Karelin V.Ya.‚ Krivchenko G.I., Mordasov A.P., Volshanik V.V., Zuykov A.L., Akhme-tov V.K. Fizicheskoe i matematicheskoe modelirovanie sistem gasheniya energii v vikhrevykh vodosbrosakh [Physical and Mathematical Modeling of Systems of Energy Dissipation in Vortex Spillways]. Fizicheskoe i matematicheskoe modelirovanie gidravlicheskikh protsessov :tezisy nauchno-tekhnicheskogo soveshchaniya, g. Divnogorsk [Abstracts of Scientific-Technical Conference “Physical and Mathematical Modeling of Hydraulic Processes”, Divnogorsk]. 1989, pp. 11—12. (In Russian)
  72. Karelin V.Ya.‚ Mordasov A.P., Zuykov A.L., Volshanik V.V. Chislennye metody eksperimental’nogo issledovaniya kharakteristik zakruchennogo potoka zhidkosti [Numerical Methods of Experimental Studies of the Characteristics of Swirling Fluid Flow]. Trudy simpoziuma MAGI [Works of the MAGI Symposium]. Divnogorsk. Belgrad, Yugoslaviya, 1990. (In Russian)
  73. Volshanik V.V., Evstigneev N.M., Zuykov A.L., Orekhov G.V. Vliyanie turbulentnoy diffuzii na protsess separatsii neftesoderzhashchikh primesey v tsilindricheskom gidrotsiklone [Effect of Turbulent Diffusion in the Process of Separation of Oily Contaminants in a Cylindrical Hydrocyclone]. Mezhvuzovsiy sbornik nauchnykh trudov po gidrotekhnicheskomu i spetsial’nomu stroitel’stvu [Interuniversity Collection of Scientific Papers on Hydraulic Engineering and Special Construction]. Moscow, MGSU Publ., 2002, pp. 55—62. (In Russian)
  74. Volshanik V.V., Zuykov A.L., Mordasov A.P. Analiticheskiy metod gidravlicheskogo rascheta vikhrevykh shakhtnykh vodosbrosov [Analytical Method of Hydraulic Calculation of Vortex Glory Hole Spillway]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 1989, no. 4, pp. 38—42. (In Russian)

Download

OPERATIONAL PECULIARITIES OF HPP SUCTION TUBES AND THEIR PROSPECTIVE DESIGNS

Vestnik MGSU 10/2015
  • Bal’zannikov Mikhail Ivanovich - Samara State University of Architecture and Civil Engineering (SSUACE) Doctor of Technical Sciences, Professor, Department of Environment Protective and Hydrotechnical Construction, Samara State University of Architecture and Civil Engineering (SSUACE), 194 Molodogvardeyskaya str., Samara, 443001, Russian Federation.
  • Piyavskiy Semen Avraamovich - Samara State University of Architecture and Civil Engineering (SSUACE) Doctor of Technical Sciences, Professor, Department of Environment Protective and Hydrotechnical Construction, Samara State University of Architecture and Civil Engineering (SSUACE), 194 Molodogvardeyskaya str., Samara, 443001, Russian Federation.

Pages 127-137

The article deals with the peculiarities of suction tubes operation at HPP hydraulic turbines. The suction tubes are shown to provide the recovery of head due to the static and dynamic reduction of pressure under the working wheel. The conditions of their successful functioning on head recovery are shown. In particular, the necessity of providing water movement without breakaway and whirlpool areas in suction pipe elements are underlined. The importance of providing more uniform velocities field at the output section of diffuser element is indicated since this leads to reduction of velocity head losses and increase in efficiency of hydraulic turbine operation. The results of flow velocities hydraulic tests at diffusor diverting waterway are made using a spatial model. Flow relative velocity distribution at the output section is shown. Based on experimental data processing the flow main features are determined. In particular, water flow velocity variation factor is obtained. Its value reaches 2.09 due to the use of water discharge installation with asymmetric increase of section height. The necessity to use large scale suction tube structures of a toggle type for low and average pressure HPPs with reactive vertical axial hydroturbines is proved. It is important to develop suction tube designs which would not raise the construction costs when being installed and at the same time would not permit unfavorable cavitation conditions. Advanced suction tube designs developed with the participation of the authors are given. Specifically it is recommended to change the ceiling inclination angle in the section ceiling element to provide a breakaway-free water flow from the walls at the changing operation modes of the hydraulic turbogenerator unit differing from each other by the amounts of passing water discharge and hence, by the velocities of the water flow. In another design - in a suction tube with a bypass cavity - a system of holes is provided in the ceiling of the diffuser parts. Through them the water input can be made into the zone of the maximal pressure drop of the output diffuser. Thanks to it the vacuum value is diminished and the conditions for cavitation are eliminated. Reduction of flow pressure pulsation is achieved as well. Thus, a conclusion is made on the expediency of developing new efficient designs of suction tubes providing the improvement of their operation conditions.

DOI: 10.22227/1997-0935.2015.10.127-137

References
  1. Bal’zannikov M.I., Elistratov V.V. Vozobnovlyaemye istochniki energii. Aspekty kompleksnogo ispol’zovaniya [Renewable Energy Sources. Aspects of the Complex Use]. Samara, OOO «Ofort», SGASU Publ., 2008, 331 p. (In Russian)
  2. Elistratov V.V. Vozobnovlyaemaya energetika [Renewable Power Engineering]. 2nd edition, enlarged. Saint Petersburg, Nauka Publ., 2013, 308 p. (In Russian)
  3. Elistratov V.V. Ispol’zovanie vozobnovlyaemykh istochnikov energii — put’ k ustoychivomu razvitiyu i energoeffektivnosti [Use of Renewable Energy Sources Is a Way to Sustainable Development and Energy Efficiency]. Nauchno-tekhnicheskie vedomosti SPbGPU [St. Petersburg State Polytechnical University Journal]. 2012, no. 3—1 (154), pp. 77—83. (In Russian)
  4. Bal’zannikov M.I., Evdokimov S.V., Galitskova Yu.M. Razvitie vozobnovlyaemoy energetiki — vazhnyy vklad v obespechenie zashchity okruzhayushchey sredy [Renewable Energy Engineering is a Significant Contribution to Providing Environmental Protection]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2014, no. 3, pp. 16—19. (In Russian)
  5. Bal’zannikov M.I. Energeticheskie ustanovki na osnove vozobnovlyaemykh istochnikov energii i osobennosti ikh vozdeystviya na okruzhayushchuyu sredu [Power Installations on the Basis of Renewable Energy Sources and Their Impact on the Environment]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. Seriya :Stroitel’stvo i arkhitektura [Bulletin of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture]. 2013, no. 31 (50), part 1, pp. 336—342. (In Russian)
  6. Evdokimov S.V., Dormidontova T.V. Otsenka nadezhnosti gidrotekhnicheskikh sooruzheniy [Hydrotechnical Structures Reliability Estimation]. Vestnik SGASU. Gradostroitel’stvo i arkhitektura [Proceedings of Samara State University of Architecture and Civil Engineering. Urban Planning and Architecture]. 2012, no. 1 (5), pp. 64—68. (In Russian)
  7. Evdokimov S.V. Problemy bezopasnosti stroitel’stva energeticheskikh ustanovok, akkumuliruyushchikh netraditsionnye (vozobnovlyaemye) istochniki energii [Problems of Construction Safety for Power Installations Accumulating Non-Traditional (Renewable) Energy Sources]. Vestnik SGASU. Gradostroitel’stvo i arkhitektura [Proceedings of Samara State University of Architecture and Civil Engineering. Urban Planning and Architecture]. 2012, no. 2 (6), pp. 68—72. (In Russian)
  8. Vasil’ev Yu.S., Kubyshkin L.I. O tekhnologii proektirovaniya ob”ektov gidroenergetiki [On the Technology of Hydropower Structures Design]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 2014, no. 7, pp. 2—8. (In Russian)
  9. Svitala F., Galitskova Yu.M., Evdokimov S.V. Osobennosti konstruktsiy gidrotekhnicheskikh sooruzheniy i agregatnykh zdaniy pervykh gidroelektrostantsiy [Structural Peculiarities of Hydrotechnical Structures and Aggregate Buildings of First Power Plants]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2014, no. 12, pp. 87—90. (In Russian)
  10. Svitala F., Galitskova Yu.M. Ispol’zovanie gidravlicheskikh energoagregatov s naklonnoy os’yu dlya malykh gidroelektrostantsiy [The Use of Hydraulic Energy Installations with Inclined Axis at Small HPPs]. Nauchnoe obozrenie [Scientific Review]. 2014, no. 10 (2), pp. 450—456. (In Russian)
  11. Piyavskiy S.A., Evdokimov S.V. Obosnovanie konstruktsiy vodopropusknykh gidrotekhnicheskikh sooruzheniy v usloviyakh neopredelennosti [Reasoning for Design of Culvert Hydrotechnical Structures under Uncertainty Conditions]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 2012, no. 6, pp. 36—43. (In Russian)
  12. Bal’zannikov M.I., Seliverstov V.A. Characteristics of Substantiation of Water-Intake Parameters at WSPP as Component Parts of the Power Complex. Power Technology and Engineering. 2015, vol. 49, no. 1, pp. 22—26. DOI: http://dx.doi.org/10.1007/s10749-015-0567-5.
  13. Evdokimov S.V. Povyshenie konkurentosposobnosti energoustanovok, ispol’zu-yushchikh energiyu techeniy [Raising the Competitive Ability of Energy Installations Using Current Energy]. Regional’naya ekologiya [Regional Ecology]. 2000, no. 3—4, pp. 90—97.(In Russian)
  14. Urishev B.U., Mukhammadiev M.M., Nosirov F., Zhuraev S.R. Snizhenie zaileniya avankamery meliorativnykh nasosnykh stantsiy [Reduction of Forebays Siltation at Ameliorative Pump Stations]. Vestnik SGASU. Gradostroitel’stvo i arkhitektura [Proceedings of Samara State University of Architecture and Civil Engineering. Urban Planning and Architecture]. 2013, no. 4 (12), pp. 49—53. (In Russian)
  15. Bakhtina I.A., Ivanov V.M., Il’inykh S.V., Stepanova P.V., Elizarov E.S. Eksperimental’nye issledovaniya mikro-GES s osevoy gidroturbinoy na gidravlicheskom stende [Experimental Tests of Micro-HPP with Axial Hydroturbine at the Hydraulic Stand]. Polzunovskiy vestnik [Polzunovsky vestnik]. 2013, no. 4—2, pp. 12—19. (In Russian)
  16. Ivanov V.M., Bakhtina I.A., Ivanova T.Yu., Il’inykh S.V. Elektrosnabzhenie i energosberezhenie s ispol’zovaniem vozobnovlyaemykh istochnikov energii [Electric Power Supply and Energy Saving When Using Renewable Energy Sources]. Vestnik SGASU. Gradostroitel’stvo i arkhitektura [Proceedings of Samara State University of Architecture and Civil Engineering. Urban Planning and Architecture]. 2015, no. 2 (19), pp. 88—93. (In Russian)
  17. Smirnov I.N. Gidravlicheskie turbiny i nasosy [Hydraulic Turbines and Pumps]. Moscow, Vysshaya shkola Publ., 1969, 400 p. (In Russian)
  18. Bal’zannikov M.I., Elistratov V.V. Rezul’taty energogidravlicheskikh issledovaniy pryamotochnogo vodovypuska krupnoy nasosnoy stantsii [Results of Power Hydraulic Investigations of Straight-Through Output of a Large Pump Plant]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 1994, no. 12, pp. 19—22. (In Russian)
  19. Seliverstov V.A. Rezul’taty issledovaniy vodopriemnogo ustroystva gidroenergeticheskoy ustanovki s ispol’zovaniem programmy «Ansys» [Results of investigations of hydrotechnical installation water input structure with the Use of “Ansys” Software]. Nauchno-tekhnicheskie vedomosti SPbGPU [St. Petersburg State Polytechnical University Journal]. 2009, no. 4—2 (89), pp. 149—153. (In Russian)
  20. Bal’zannikov M.I., Seliverstov V.A. Osobennosti vybora osnovnykh parametrov konstruktsii vodovypusknogo sooruzheniya sektsionnogo tipa krupnoy nasosnoy stantsii [Peculiarities of Main Design Parameters Selection for Section-Type Water Output Structure of a Large Pump Plant]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2010, no. 8, pp. 17—19. (In Russian)
  21. Vasil’ev Yu.S., Kukushkin V.A., Bal’zannikov M.I., Petrov V.I. A. s. 1402700 SSSR, MPK F03B11/00. Vsasyvayushche-otsasyvayushchaya truba obratimogo gidroagregata [Inventors certificate 1402700 USSR, MPK F03B11/00. In and Out Suction Pipe of a Reverse Hydrogenerator]. No. 4143886/25-06 ; appl. 10.11.1986 ; publ. 15.06.1988, bulletin no. 22. Leningrad Polytechnic Institute named after M.I. Kalinin, 3 p. (In Russian)
  22. Bal’zannikov M.I., Belyaev S.G., Kruglikov V.V., Kuklin D.E. A. s. 1622638 SSSR, MPK F04D29/52. Podvodyashchee ustroystvo vertikal’nogo lopastnogo nasosa [Inventors certificate 1622638 USSR, MPK F04D29/52. Feeder Structure of Vertical Blade Pump]. No. 4645564/29 ; appl. 03.02.1989 ; publ. 23.01.1991, bulletin no. 3. Kuybyshev Engineering and Construction Institute, Leningrad Polytechnic Institute named after M.I. Kalinin, 4 p. (In Russian)
  23. Bal’zannikov M.I., Evdokimov S.V. Patent 2140486 RF, MPK E02B9/00. Otsasyvayushchaya truba gidroagregata [Russian Patent 2140486, MPK E02B9/00/. Hydrogenerator Suction Tube]. No. 98117659/13 ; appl. 24.09.1998, publ. 27.10.1999, bulletin no. 30. Patent holder SGASA, 3 p. (In Russian)
  24. Vissarionov V.I., Belyaev S.G., Pimenov V.I., Urishev B.U. A. s. 1341370 SSSR, MPK F03B3/12, F03B11/04. Lopast’ osevogo rabochego kolesa [Inventors certificate 1341370 USSR, MPK F03B3/12, F03B11/04. Axial Working Wheel Blade]. No. 4012467/25-06 ; appl. 21.01.1986, publ. 30.09.1987, bulletin no. 36. Leningrad Polytechnic Institute named after M.I. Kalinin, 2 p. (In Russian)

Download

Results 1 - 3 of 3