HYDRAULICS. ENGINEERING HYDROLOGY. HYDRAULIC ENGINEERING

An alternative approach to assessing feasibility of flushing sediment from reservoirs

Vestnik MGSU 6/2014
  • Elfimov Valeriy Ivanovich - Peoples Friendship University of Russia (PFUR) Candidate of Technical Sciences, Associate Professor, Department of Hydraulics and Hydraulic Engineering Structures, Peoples Friendship University of Russia (PFUR), 6 Miklukho-Maklaya str., Moscow, 117198, Russian Federation; +7 (495) 9520831; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Khakzad Hamid - Peoples Friendship University of Russia (PFUR) postgraduate student, Department of Hydraulics and Hydraulic Engineering Structures, Peoples Friendship University of Russia (PFUR), 6 Miklukho-Maklaya str., Moscow, 117198, Russian Federation; +7 (495) 9520831; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 126-136

Effective parameters on feasibility of sediment flushing through reservoirs include hydrological, hydraulic, and topographic properties of the reservoirs. In this study, the performances of the Decision tree forest (DTF) and Group method of data handling (GMDH) for assessing feasibility of flushing sediment from reservoirs, were investigated. In this way, Decision tree Forest, that combines multiple Decision tree, used to evaluate the relative importance of factors affecting flushing sediment. At the second step, GMDH deployed to predict the feasibility of flushing sediment from reservoirs. Results indicate that these models, as an efficient novel approach with an acceptable range of error, can be used successfully for assessing feasibility of flushing sediment from reservoirs.

DOI: 10.22227/1997-0935.2014.6.126-136

References
  1. Muhammad A.C., Habib U.R. Worldwide Experience of Sediment Flushing Through Reservoirs. Journal of Engineering & Technology Mehran University Research. 2012, no. 31 (3), pp. 395—408.
  2. Morris G., Fan J. Reservoir Sedimentation Handbook; Design and Management of Dams, Reservoirs and Watersheds for Sustainable Use. New York, McGraw Hill, 1997.
  3. D’Rohan W. The Silting Up of Reservoirs and Canals and Some Methods for Preventing Same. Engin. and Contract. 1911, vol. 35, pp. 56—58.
  4. White W.R. A Review of Current Knowledge World Water Storage in Man-Made Reservoirs, FR/R0012. The Listons, Liston Road, Marlow, Foundation for Water Research Allen House, 2005, p. 40.
  5. Qian N. Reservoir sedimentation and slope stability; technical and environmental effects. Fourteenth International Congress on Large Dams, Transactions. Rio de Janeiro, Brazil, 1982, 3-7 May, vol. III, pp. 639—690.
  6. Ackers P. and Thompson G. Reservoir sedimentation and influence of flushing. In Sediment Transport in Gravel-bed Rivers, C.R. Thorne, J.C. Bathurst, and R.D. Hey, eds, John Wiley & Sons, Chichester, 1987, pp. 845—868.
  7. Mahmood K. Reservoir Sedimentation: Impact, Extent, and Mitigation. World Bank Technical. Washington, D.C., 1987, рр. 71, 118.
  8. Atkinson E. The Feasibility of Flushing Sediment from Reservoirs. HR Wallingford, UK, 1996, Report no. OD 137, pp. 21.
  9. Lai J.S. and Shen H.W. Flushing sediment through reservoirs. Journal of Hydraulic Research. 1996, vol. 34, no. 2, pp. 237—255.
  10. Kunwar P.S., Shikha G., Premanjali R. Identifying Pollution Sources and Predicting Urban Air Quality Using Ensemble Learning Methods. Atmospheric Environment. 2013, vol. 80, pp. 426—437. DOI: 10.1016/j.atmosenv.2013.08.023.
  11. Efron B. Bootstrap Methods: another Look at the Jackknife. The Annals of Statistics. 1979, vol. 7, no. 1, pp. 1—26.
  12. Erdal H.I., Karakurt O. Advancing Monthly Stream Flow Prediction Accuracy of CART Models Using Ensemble Learning Paradigms. Journal of Hydrology, 2013, vol. 477, pp. 119—128. DOI: 10.1016/j.jhydrol.2012.11.015.
  13. Wang G., Hao J., Ma J., Jiang H. A comparative assessment of ensemble learning for credit scoring. Expert Systems with Applications. 2011, vol. 38, no. 1, рр. 223—230.
  14. Ivahnenko A.G. Polynomial Theory of Complex Systems. IEEE Transactions on Systems, Man, and Cybernetics. 1971, pp. 364—378. DOI: 10.1109/TSMC.1971.4308320.
  15. Farlow SJ, editor. Self-organizing Method in Modeling: GMDH Type Algorithm. Marcel Dekker Inc., New York, 1984.

Download

ADJUSTMENT OF MORPHOMETRIC PARAMETERS OF WATER BASINS BASED ON DIGITAL TERRAIN MODELS

Vestnik MGSU 10/2012
  • Krasil'nikov Vitaliy Mikhaylovich - Nizhny Novgorod State University of Architecture and Civil Engineering (NNGASU) assistant lecturer, Department of Hydraulic Engineering Structures, Nizhny Novgorod State University of Architecture and Civil Engineering (NNGASU), 65 Il'inskaya st., Nizhny Novgorod, 603950, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Sobol' Il'ya Stanislavovich - Nizhny Novgorod State University of Architecture and Civil Engineering (NNGASU) Candidate of Technical Sciences, Associate Professor, Department of Hydraulic Engineering Structures, Nizhny Novgorod State University of Architecture and Civil Engineering (NNGASU), 65 Il'inskaya st., Nizhny Novgorod, 603950, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 272 - 280

The authors argue that effective use of water resources requires accurate morphometric characteristics of water basins. Accurate parameters are needed to analyze their condition, and to assure their appropriate control and operation. Today multiple water basins need their morphometric characteristics to be adjusted and properly stored.
The procedure employed so far is based on plane geometric horizontals depicted onto topographic maps. It is described in the procedural guidelines issued in respect of the «Application of water resource regulations governing the operation of waterworks facilities of power plants». The technology described there is obsolete due to the availability of specialized software. The computer technique is based on a digital terrain model.
The authors provide an overview of the technique implemented at Rybinsk and Gorkiy water basins in this article. Thus, the digital terrain model generated on the basis of the field data is used at Gorkiy water basin, while the model based on maps and charts is applied at Rybinsk water basin.
The authors believe that the software technique can be applied to any other water basin on the basis of the analysis and comparison of morphometric characteristics of the two water basins.

DOI: 10.22227/1997-0935.2012.10.272 - 280

References
  1. Metodicheskie ukazaniya po sostavleniyu pravil ispol’zovaniya vodnykh resursov vodokhranilishch gidrouzlov elektrostantsiy [Guidelines for the Compilation of Rules Governing the Use of Water Resources of Water Basins of Hydraulic Power Plants]. Ministerstvo topliva i energetiki Rossiyskoy Federatsii RAO «EES Rossii» [Ministry of Fuel and Energy, RAO UES of Russia]. 2000.
  2. Avakyan A.B., Saltykin V.P., Sharapov V.A. Vodokhranilishcha [Water Basins]. Moscow, Mysl’ Publ., 1987, 325 p.
  3. Regulations of State Monitoring of Water Bodies no. 219, issued by the RF Government on 10.04.2007.
  4. Sobol’ S.V., Sobol’ I.S., Sidorov N.P., Krasilnikov V.M., Hokhlov D.N. Prognoznoe modelirovanie ekologicheskoy opasnosti vodnykh ob”ektov na urbanizirovannykh territoriyakh [Predictive Modeling of the Ecological Hazard to Water Bodies in Urban Areas]. Privolzhskiy nauchnyy zhurnal [Volga Region Scientific Journal]. 2009, no. 4, pp. 158—162.
  5. Vodokhranilishcha Verkhney Volgi [Water Basins of Upper Volga]. Nizhniy Novgorod, VVBVU Publ., 2008, 156 p.
  6. Zemlyanov I.V., Gorelits O.V., Pavlovskiy A.E., Shikunova E.Yu. Ispol’zovanie geoinformatsionnykh tekhnologiy dlya otsenki sovremennykh morfologicheskikh kharakteristik vodnykh ob”ektov [Application of the GIS Technology in the Assessment of Morphological Characteristics of Water Bodies]. Research of Oceans and Seas. Works of the State Institute of Oceanography. Moscow, FGU GOIN Publ., 2009, no. 212, pp. 258—269.
  7. Sobol’ I.S., Krasil’nikov V.M., Khokhlov D.N. Sovremennye metody s”emki podvodnogo rel’efa vodokhranilishch [Modern Methods of Mapping the Underwater Terrain of Water Basins]. Privolzhskiy nauchnyy zhurnal [Volga Region Scientific Journal]. 2010, no. 2, pp. 34—40.
  8. SP 11-104—97. Inzhenerno-geodezicheskie izyskaniya dlya stroitel’stva. Ch. III. Inzhenerno-gidrograficheskie raboty pri inzhenernykh izyskaniyakh dlya stroitel’stva [Engineering and Topographical Surveys for Construction. Part III. Engineering and Hydrographic Assignments as Part of Engineering Surveys for Construction]. Moscow, PNIIS Publ., 2004, 105 p.
  9. Krasil‘nikov V.M., Tararin A.M. Verifikatsiya gidrodinamicheskoy modeli uchastka reki Volgi, s primeneniem materialov distantsionnogo zondirovaniya Zemli iz kosmosa [Verifi cation of the Hydrodynamic Model of the Site of the Volga River through Remote Sensing of the Earth from the Space] Privolzhskiy nauchnyy zhurnal [Volga Region Scientific Journal]. 2008, no. 4, pp. 94—98.
  10. Osnovnye pravila ispol’zovaniya vodnykh resursov Rybinskogo i Gor’kovskogo vodokhranilishch na r. Volge [Basic Rules Governing the Use of Water Resources of Rybinsk and Gorkiy Water Basins of the Volga River]. Moscow, Minmeliovodkhoz RSFSR Publ., 1983, 52 p.

Download

Results 1 - 2 of 2