DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

Compression test of cold-formedsteel perforated profile with steel sheathing

Vestnik MGSU 5/2015
  • Shamanin Aleksandr Yur’evich - Moscow State Academy of Water Transport (MSAWT) Senior Lecturer, postgraduate student, Department of Shipbuilding and Ship Repair, Moscow State Academy of Water Transport (MSAWT), 2-1 Novodanilovskaya nab., Moscow, 115407, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 43-52

The subject of this paper is the stability and strength of cold-formed and perforated steel sigma-section columns with steel sheathing of different thickness. Ceilings with and without steel sheathing of different thickness are tested to failure in compression on a laboratory machine, which was based on a manual hydraulic jack. Series of 4 experiments with full-scale walls (2.5 m height) were carried out. Also, for examination of the role of boundary conditions, the sheet in a ceiling is either left free or connected to base with screws.In civil engineering there are many experiments and methodologies for calculating the strength and buckling of ceiling with the sheathing of various materials, such as oriented strand board and gypsum board. However, for producing superstructures of ships the materials with high plastic properties and strength characteristics are required. For example steel possesses such properties. It was the main reason for conducting a series of experiments and studying the behavior of cold-formed steel columns with steel sheathing. During the experiments the deformation of the cross-section of three equally spaced cross sections was determined, as well as the axial deformation of the central column in the ceiling with steel sheathing.The test results showed the influence of the thickness of sheathing and boundary condition of a sheet on the strength and buckling of ceiling. According to the results of the tests it is necessary to evaluate the impact of the sheathing made of different materials and if necessary to carry out further tests.

DOI: 10.22227/1997-0935.2015.5.43-52

References
  1. Slugacheva E.V. Legkie stal’nye tonkostennye konstruktsii [Lightweight Steel Thin-Walled Structures]. Prioritetnye nauchnye napravleniya: ot teorii k praktike [Priority Scientific Fields: from Theory to Practice]. 2013, no. 5 (June), pp. 6—9. (In Russian)
  2. Santalova T.N., Bogarev I.S. Maloetazhnoe stroitel’stvo po karkasnoy tekhnologii [Low-rise Construction Basing on Frame Technology]. Sbornik nauchnykh trudov Sworld po materialam Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Collection of Scientific Works of Sworld : from the Materials of the International Science and Practice Conference]. 2011, vol. 29, no. 3, pp. 15—17. (In Russian)
  3. Shamanin A.Yu. O primenenie stal’nogo tonkostennogo kholodnognutogo profilya v kruiznom rechnom flote [On Applying Steel Thin-Walled Cold-Formed Profile in Cruise River Fleet]. Innovatsionnye preobrazovaniya, prioritetnye napravleniya i tendentsii razvitiya v ekonomike, proektnom menedzhmente, obrazovanii, yurisprudentsii, yazykoznanii, kul’turologii, ekologii, zoologii, khimii, biologii, meditsine, psikhologii, politologii, filologii, filosofii, sotsiologii, gradostroitel’stve, informatike, tekhnike, matematike, fizike : sbornik nauchnykh statey po itogam Mezhdunarodnoy nauchno-prakticheskoy konferentsii 29—30 aprelya 2014 goda [Innovative Transformations, Priority Directions and Tendencies of the Development in Economy, Project Management, Education, Law, Linguistics, Culturology, Sociology, Urban Development, Computer Science, Technology, Mathematics, Physics : Collection of Scientific Articles of the International Science and Practice Conference, April 29—30, 2014]. Saint Petersburg, Kul’tInformPress Publ., 2014, pp. 183—186. (In Russian)
  4. EN 1993-1-3:2004. Evrokod 3. Proektirovanie stal’nykh konstruktsiy. Chast’ 1—3. Obshchie pravila. Dopolnitel’nye pravila dlya kholodnoformovannykh elementov i profilirovannykh listov [EN 1993-1-3:2004. Eurocode 3. Design of Steel Structures. Part 1—3. General Rules. Additional Rules for Cold-Formed Elements and Shaped Sheets]. 2004. Available at: http://docs.cntd.ru/document/1200089713/. Date of access: 20.02.2015. (In Russian)
  5. Vatin N.I., Popova E.N. Termoprofil’ v legkikh stal’nykh stroitel’nykh konstruktsiyakh [Thermal Profile in Lightweight Steel Building Structures]. Saint Petersburg, St. Petersburg Polytechnic University Publ., 2006, 64 p. (In Russian)
  6. Kikot’ A.A., Grigor’ev V.V. Vliyanie shiriny poyasa i parametrov stenki na effektivnost’ stal’nogo tonkostennogo kholodnognutogo profilya sigmaobraznogo secheniya pri rabote na izgib [Influence of the Stake Width and Wall Parametres on the Efficiency of Steel Then-Walled Cold-Formed Profile of Sigmoid Cross-Section at Bending]. Inzhenerno-stroitel’nyy zhurnal [Magazine of Civil Engineering]. 2013, no. 1 (36), pp. 97—102. (In Russian)
  7. Zebel’yan Z.Kh. Osnovy rascheta perforirovannykh plastinchatykh elementov termoprofiley [Foundations of Calculating Perforated Plated Elements of Thermal Profiles]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2015, no. 2, pp. 17—23. (In Russian)
  8. Volkov V.M. Prochnost’ korablya [Ship Strength]. N. Novgorod, NGTU Publ., 1994, 256 p. (In Russian)
  9. Shifferaw Y., Vieira Jr. L.C.M., Schafer B.W. Compression Testing of Cold-Formed Steel Columns with Different Sheathing Configurations. Proceedings of the Structural Stability Research Council — Annual Stability Conference. Orlando, FL, 2010, pp. 593—612.
  10. Kurazhova V.G., Nazmeeva T.V. Vidy uzlovykh soedineniy v legkikh stal’nykh tonkostennykh konstruktsiyakh [Types of Joint Connections in Lightweight Steel Thin-Walled Structures]. Inzhenerno-stroitel’nyy zhurnal [Magazine of Civil Engineering]. 2011, no. 3, pp. 47—52. (In Russian)
  11. Tan S.H., Seah L.K., Fok S.C. Connections in Cold-Formed Thin-Walled Structures. Computers & Structures. 1996, vol. 60, no. 1, pp. 169—172.
  12. Ayrumyan E.L. Rekomendatsii po proektirovaniyu, izgotovleniyu i montazhu konstruktsiy karkasa maloetazhnykh zdaniy i mansard iz kholodnognutykh stal’nykh otsinkovannykh profiley proizvodstva OOO «Balt-Profil’» [Recommendations on Design, Production and Erection of the Frame Structures of Low-Rise Buildings and Mansards of Cold-Formed Steel Galvanized Sidings Produced by LLC “Balt-Profil’”]. Moscow, TsNIIPSK im. Mel’nikova Publ., 2004, 70 p. (In Russian)
  13. Katranov I.G. Effektivnost’ primeneniya boltov i samosverlyashchikh samonarezayushchikh vintov v soedineniyakh tonkostennykh stal’nykh konstruktsiy [Efficiency of Applying Bolts and Self-Drilling Thread Forming Screws in the Joints of Thin-Walled Steel Structures]. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka [Construction Materials, Equipment and Technologies of the 21st Century]. 2011, no. 5 (148), pp. 30—31. (In Russian)
  14. Nazmeeva T.V. Metodika provedeniya ispytaniy na szhatie stoek, vypolnennykh iz kholodnognutogo stal’nogo profilya [Methods of Performing Compression Tests of Beams Made of Cold-Formed Steel Profile]. Vestnik Cherepovetskogo gosudarstvennogo universiteta [Cherepovets State University Bulletin]. 2013, vol. 1, no. 3 (49), pp. 12—17. (In Russian)
  15. Winn A.P., Kyaw H., Troyanovskyi V.M., Aung Y.L. Metodika i programma dlya nakopleniya i statisticheskogo analiza rezul’tatov komp’yuternogo eksperimenta [Methodology and program for the storage and statistical analysis of the results of computer experiment]. Komp’yuternye issledovaniya i modelirovanie [Computer Research and Modeling]. 2013, vol. 5, no. 4, pp. 589—595. (In Russian)
  16. Shifferaw Y., Vieira Jr. L.C.M., Schafer B.W. Compression Testing of Cold-Formed Steel Columns with Different Sheathing Configurations. Structural Stability Research Council — Annual Stability Conference, SSRC 2010 — Proceedings 2010 Annual Stability Conference, SSRC 2010. Orlando, FL, 2010, pp. 593—612.
  17. Foroughi H., Moen C.D., Myers A., Tootkaboni M., Vieira L., Schafer B.W. Analysis and Design of Thin Metallic Shell Structural Members-Current Practice and Future Research Needs. Proc. of Annual Stability Conference Structural Stability Research Council, Toronto, Canada, March 2014. Available at: http://nuweb5.neu.edu/atm/wp-content/uploads/2014/04/SSRC%202014%20Foroughi%20et%20al%20thin%20shells%20review.pdf/. Date of access: 20.02.2015.
  18. Li Z., Schafer B.W. The Constrained Finite Strip Method for General end Boundary Conditions. Structural Stability Research Council — Annual Stability Conference, SSRC 2010 — Proceedings 2010 Annual Stability Conference, SSRC 2010. Orlando, FL, 2010, pp. 573—591.
  19. Rybakov V.A., Nedviga P.N. Empiricheskie metody otsenki nesushchey sposobnosti stal’nykh tonkostennykh prosechno-perforirovannykh balok i balok so sploshnoy stenkoy [Empirical Methods of Estimating the Bearing Capacity of Steel Thin-Walled Expanded-Perforatef Beams and Beams with Solid Wall]. Inzhenerno-stroitel’nyy zhurnal [Magazine of Civil Engineering]. 2009, no. 8, pp. 27—30. (In Russian)
  20. Tusnina O.A., Heinisuo M. Metodika rascheta tonkostennykh gnutykh progonov na osnove rekomendatsiy Eurocode [Methods of Calculating Thin-Walled Bent Beams Basing on Eurocode Recommendations]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2012, no. 11, pp. 67—70. (In Russian)
  21. Vatin N., Sinelnikov A., Garifullin M., Trubina D. Simulation of Cold-Formed Steel Beams in Global and Distortional Buckling. Applied Mechanics and Materials. 2014, vol. 633—634, pp. 1037—1041. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMM.633-634.1037.

Download

STRENGTHENING AND ANALYSIS OF STEEL STRU CT URES MADE OF THIN-WALLED COLD-BENT PROFILES WITH ACCOUNT FOR THE YIELD OF JOINT CONNECTIONS

Vestnik MGSU 11/2012
  • Kunin Yuriy Saulovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Chair, Department of Testing of Structures; +7 (495) 287-49-14, ext. 1331, 1150., Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kolesov Aleksandr Ivanovich - Nizhny Novgorod State University of Architecture and Civil Engineering (NNGASU) Candidate of Technical Sciences, Professor, Chair, Department of Metal Structures, +7 (831) 430-54-88, Nizhny Novgorod State University of Architecture and Civil Engineering (NNGASU), 65, Ilinskaya St., Nizhny Novgorod 603950, Russian Federation.
  • Yambaev Ivan Anatolevich - Nizhny Novgorod State University of Architecture and Civil Engineering (NNGASU) Candidate of Technical Sciences, Associate Professor, Department of Metal Structures, +7 (831) 430-54-88, Nizhny Novgorod State University of Architecture and Civil Engineering (NNGASU), 65, Ilinskaya St., Nizhny Novgorod 603950, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Morozov Dmitriy Aleksandrovich - Nizhny Novgorod State University of Architecture and Civil Engineering (NNGASU) postgraduate student, Department of Metal Structures, +7 (831) 430-54-88, Nizhny Novgorod State University of Architecture and Civil Engineering (NNGASU), 65, Ilinskaya St., Nizhny Novgorod 603950, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 74 - 81

A light steel thin-walled structure is very effective. The durability and strength of structures,
investment efficiency, high construction intensity, excellent technical and operational characteristics,
backed by extensive architectural solutions make the employment of the technology of light
steel thin-walled structures particularly efficient in low-rise commercial construction. Light steel thinwalled
structures represent a relatively new area, therefore, the regulatory base required for a reliable
analysis of these st ructures is unavailable, and this fact limits their use in construction. Russia
has no special norms regulating the above parameters. The underdeveloped regulatory framework
in Russia gives rise to the problem of market saturation with cheap low-quality fasteners.
The purpose of testing is to determine the mechanical properties of steel . The tests were applied
to five separate self-tapping screw connections. The purpose of testing was also to determine
the bearing capacity and the stress-strain state of connections.
Numerical calculations using the finite element method required a steel diagram. MGSU specialists
mad e tensile test specimen to determine the physical and mechanical properties of coldformed
thin-walled steel profiles at the "Sector for Testing of Building Structures". Identification of
pliability of connections was required to employ the dependence obtained using numerical calculations
of structures. As a result of the work performed at MGSU, a diagram of thin-walled cold-formed
steel profiles was generated.

DOI: 10.22227/1997-0935.2012.11.74 - 81

References
  1. Kunin Yu.S, Katranov I.G. Optimizatsiya primeneniya vytyazhnykh zaklepok i samosverlyashchikh samonarezayushchikh vintov v soedineniyakh LSTK [Optimization of Use of Pop Rivets and Self-Drilling Self-Tapping Screws in Connections of Light-steel Thin-walled Structures]. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka [Construction Materials, Equipment, Technologies of the XXI Century]. 2010, no. 7, pp. 35—37.
  2. Kunin Yu.S, Katranov I.G. K voprosu rascheta vintovykh soedineniy legkikh stal’nykh tonkostennykh konstruktsiy na rastyazhenie [Analysis of Screw Connections of Light Steel Thin-walled Structures in Tension]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2011, no. 3, pp. 9—11.
  3. Katranov I.G. Ispytaniya i raschet vintovykh soedineniy legkikh stal’nykh tonkostennykh konstruktsiy na rastyazhenie [Testing and Analysis of Screw Connections of Light Steel Thin-walled Structures in Tension]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 2, pp. 89—93.
  4. Kikot’ A.A., Kornitskaya M.N., Murzin E.V. Programma rascheta progibov izgibaemykh elementov iz stal’nykh tonkostennykh kholodnognutykh profiley [Software for the Calculation of Deflections of Flexural Elements Made of Thin-walled Cold-formed Steel Profiles]. Proektirovanie i stroitel’stvo v Sibiri [Design and Construction in Siberia]. 2010, no. 4, pp. 8—10.
  5. Teplykh A.V. Primenenie obolochechnykh i ob”emnykh elementov pri raschetakh stroitel’nykh stal’nykh konstruktsiy v programmakh SCAD i Nastran s uchetom geometricheskoy i fi zicheskoy nelineynosti [The Use of Envelope and 3D Elements in the Calculation of Building Steel Structures Using SCAD and Nastran Software with Account for Geometrical and Physical Nonlinearity]. Magazine of Civil Engineering, no. 3, pp. 4—20.
  6. Katranov I.G., Kunin Yu.S. Eksperimental’nye issledovaniya raboty vytyazhnykh zaklepok i vintov v soedineniyakh LSTK. Predotvrashchenie avariy zdaniy i sooruzheniy. [Experimental Examinations of Performance of Rivets and Screws in Connections of Light Steel Thin-walled Structures. Prevention of Failure of Buildings and Structures]. Available at: http://www.pamag.ru/pressa/experiment-zv-lstk. Date of access: 19.09.2012.
  7. Bryzgalov A.V. K raschetu nesushchey sposobnosti soedineniy samosverlyashchimi samonarezayushchimi vintami [Analysis of the Bearing Capacity of Connections of Self-drilling Self-tapping Screws]. Krepezh, klei, instrument i…. [Fasteners, Glues, Tools and ….]. 2006, no. 2. Available at: http://www.navek.ru/index.php?page=sections&id=184&page_num=
  8. Kozhevnikov V.F. Raschet mestnoy podatlivosti elementov mnogoryadnogo dvusreznogo boltovogo soedineniya [Analysis of Local Yield of Elements of Multi-raw Double-cut Bolted Connections]. Uchenye zapiski TsAGI [Scientific Notes of Central Aerohydrodynamic Institute]. 1982, no. 1, pp. 57—63.
  9. Anan’in M.Yu., Fomin N.I. Metod ucheta podatlivosti v uzlakh metallicheskikh konstruktsiy zdaniy [Method of Analysis of Yield of Joints of Metal Structures of Buildings]. Akademicheskiy vestnik UralNIIproekt RAASN [Academic Bulletin of the Ural Scientific and Research Institute of the Russian Academy of Architectural and Construction Sciences]. 2010, no 2, pp. 72—74.
  10. Ayrumyan E.L. Rekomendatsii po proektirovaniyu, izgotovleniyu i montazhu konstruktsiy karkasa maloetazhnykh zdaniy i mansard iz kholodnognutykh stal’nykh otsinkovannykh profiley OOO «Balt-Profil’» [Recommendations concerning Design, Manufacturing and Assembly of the Structural Frame of Low-rise Buildings and Mansards Made of Cold-formed Galvanized Steel Profiles of LLC “Balt-Profile”]. Moscow, 2004, 70 p.
  11. Orlov I.V. Kto lomaet rynok krepezha? [Who Destroys the Market of Fasteners?] Tekhnologii stroitel’stva [Construction Technologies]. Moscow, 2007, no. 2. Available at: http://www.rivets.ru/sites/all/themes/rivets/files/sp602007.pdf.
  12. Trekin N.N. Rekomendatsii po raschetu karkasov mnogoetazhnykh zdaniy s uchetom podatlivosti uzlovykh sopryazheniy sbornykh zhelezobetonnykh konstruktsiy [Recommendations concerning the Analysis of Frames of Multi-storey Buildings with Consideration for Yield of Nodal Interfaces of Precast Concrete Structures]. OAO «TsNIIPromzdaniy» Publ., 2002, 39 p.
  13. SNiP 2.01.07—85*. Nagruzki i vozdeystviya [Construction Rules and Regulations 2.01.07—85*. Loads and Effects]. Moscow, FGUP TsPP Publ., 2005, 44 p.
  14. GOST 11701—84. Metody ispytaniy na rastyazhenie tonkikh listov i lent [State Standard 11701—84. Methods of Tensile Strength Testing of Thin Sheets and Strips]. 10 p.
  15. SNiP II-23—81*. Stal’nye konstruktsii. Normy proektirovaniya [Construction Rules and Regulations II-23—81*. Steel Structures. Design Regulations]. Moscow, GUP TsPP Publ., 2001, 90 p.

Download

Results 1 - 2 of 2