DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

STRENGTHENING AND ANALYSIS OF STEEL STRU CT URES MADE OF THIN-WALLED COLD-BENT PROFILES WITH ACCOUNT FOR THE YIELD OF JOINT CONNECTIONS

Vestnik MGSU 11/2012
  • Kunin Yuriy Saulovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Chair, Department of Testing of Structures; +7 (495) 287-49-14, ext. 1331, 1150., Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kolesov Aleksandr Ivanovich - Nizhny Novgorod State University of Architecture and Civil Engineering (NNGASU) Candidate of Technical Sciences, Professor, Chair, Department of Metal Structures, +7 (831) 430-54-88, Nizhny Novgorod State University of Architecture and Civil Engineering (NNGASU), 65, Ilinskaya St., Nizhny Novgorod 603950, Russian Federation.
  • Yambaev Ivan Anatolevich - Nizhny Novgorod State University of Architecture and Civil Engineering (NNGASU) Candidate of Technical Sciences, Associate Professor, Department of Metal Structures, +7 (831) 430-54-88, Nizhny Novgorod State University of Architecture and Civil Engineering (NNGASU), 65, Ilinskaya St., Nizhny Novgorod 603950, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Morozov Dmitriy Aleksandrovich - Nizhny Novgorod State University of Architecture and Civil Engineering (NNGASU) postgraduate student, Department of Metal Structures, +7 (831) 430-54-88, Nizhny Novgorod State University of Architecture and Civil Engineering (NNGASU), 65, Ilinskaya St., Nizhny Novgorod 603950, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 74 - 81

A light steel thin-walled structure is very effective. The durability and strength of structures,
investment efficiency, high construction intensity, excellent technical and operational characteristics,
backed by extensive architectural solutions make the employment of the technology of light
steel thin-walled structures particularly efficient in low-rise commercial construction. Light steel thinwalled
structures represent a relatively new area, therefore, the regulatory base required for a reliable
analysis of these st ructures is unavailable, and this fact limits their use in construction. Russia
has no special norms regulating the above parameters. The underdeveloped regulatory framework
in Russia gives rise to the problem of market saturation with cheap low-quality fasteners.
The purpose of testing is to determine the mechanical properties of steel . The tests were applied
to five separate self-tapping screw connections. The purpose of testing was also to determine
the bearing capacity and the stress-strain state of connections.
Numerical calculations using the finite element method required a steel diagram. MGSU specialists
mad e tensile test specimen to determine the physical and mechanical properties of coldformed
thin-walled steel profiles at the "Sector for Testing of Building Structures". Identification of
pliability of connections was required to employ the dependence obtained using numerical calculations
of structures. As a result of the work performed at MGSU, a diagram of thin-walled cold-formed
steel profiles was generated.

DOI: 10.22227/1997-0935.2012.11.74 - 81

References
  1. Kunin Yu.S, Katranov I.G. Optimizatsiya primeneniya vytyazhnykh zaklepok i samosverlyashchikh samonarezayushchikh vintov v soedineniyakh LSTK [Optimization of Use of Pop Rivets and Self-Drilling Self-Tapping Screws in Connections of Light-steel Thin-walled Structures]. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka [Construction Materials, Equipment, Technologies of the XXI Century]. 2010, no. 7, pp. 35—37.
  2. Kunin Yu.S, Katranov I.G. K voprosu rascheta vintovykh soedineniy legkikh stal’nykh tonkostennykh konstruktsiy na rastyazhenie [Analysis of Screw Connections of Light Steel Thin-walled Structures in Tension]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2011, no. 3, pp. 9—11.
  3. Katranov I.G. Ispytaniya i raschet vintovykh soedineniy legkikh stal’nykh tonkostennykh konstruktsiy na rastyazhenie [Testing and Analysis of Screw Connections of Light Steel Thin-walled Structures in Tension]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 2, pp. 89—93.
  4. Kikot’ A.A., Kornitskaya M.N., Murzin E.V. Programma rascheta progibov izgibaemykh elementov iz stal’nykh tonkostennykh kholodnognutykh profiley [Software for the Calculation of Deflections of Flexural Elements Made of Thin-walled Cold-formed Steel Profiles]. Proektirovanie i stroitel’stvo v Sibiri [Design and Construction in Siberia]. 2010, no. 4, pp. 8—10.
  5. Teplykh A.V. Primenenie obolochechnykh i ob”emnykh elementov pri raschetakh stroitel’nykh stal’nykh konstruktsiy v programmakh SCAD i Nastran s uchetom geometricheskoy i fi zicheskoy nelineynosti [The Use of Envelope and 3D Elements in the Calculation of Building Steel Structures Using SCAD and Nastran Software with Account for Geometrical and Physical Nonlinearity]. Magazine of Civil Engineering, no. 3, pp. 4—20.
  6. Katranov I.G., Kunin Yu.S. Eksperimental’nye issledovaniya raboty vytyazhnykh zaklepok i vintov v soedineniyakh LSTK. Predotvrashchenie avariy zdaniy i sooruzheniy. [Experimental Examinations of Performance of Rivets and Screws in Connections of Light Steel Thin-walled Structures. Prevention of Failure of Buildings and Structures]. Available at: http://www.pamag.ru/pressa/experiment-zv-lstk. Date of access: 19.09.2012.
  7. Bryzgalov A.V. K raschetu nesushchey sposobnosti soedineniy samosverlyashchimi samonarezayushchimi vintami [Analysis of the Bearing Capacity of Connections of Self-drilling Self-tapping Screws]. Krepezh, klei, instrument i…. [Fasteners, Glues, Tools and ….]. 2006, no. 2. Available at: http://www.navek.ru/index.php?page=sections&id=184&page_num=
  8. Kozhevnikov V.F. Raschet mestnoy podatlivosti elementov mnogoryadnogo dvusreznogo boltovogo soedineniya [Analysis of Local Yield of Elements of Multi-raw Double-cut Bolted Connections]. Uchenye zapiski TsAGI [Scientific Notes of Central Aerohydrodynamic Institute]. 1982, no. 1, pp. 57—63.
  9. Anan’in M.Yu., Fomin N.I. Metod ucheta podatlivosti v uzlakh metallicheskikh konstruktsiy zdaniy [Method of Analysis of Yield of Joints of Metal Structures of Buildings]. Akademicheskiy vestnik UralNIIproekt RAASN [Academic Bulletin of the Ural Scientific and Research Institute of the Russian Academy of Architectural and Construction Sciences]. 2010, no 2, pp. 72—74.
  10. Ayrumyan E.L. Rekomendatsii po proektirovaniyu, izgotovleniyu i montazhu konstruktsiy karkasa maloetazhnykh zdaniy i mansard iz kholodnognutykh stal’nykh otsinkovannykh profiley OOO «Balt-Profil’» [Recommendations concerning Design, Manufacturing and Assembly of the Structural Frame of Low-rise Buildings and Mansards Made of Cold-formed Galvanized Steel Profiles of LLC “Balt-Profile”]. Moscow, 2004, 70 p.
  11. Orlov I.V. Kto lomaet rynok krepezha? [Who Destroys the Market of Fasteners?] Tekhnologii stroitel’stva [Construction Technologies]. Moscow, 2007, no. 2. Available at: http://www.rivets.ru/sites/all/themes/rivets/files/sp602007.pdf.
  12. Trekin N.N. Rekomendatsii po raschetu karkasov mnogoetazhnykh zdaniy s uchetom podatlivosti uzlovykh sopryazheniy sbornykh zhelezobetonnykh konstruktsiy [Recommendations concerning the Analysis of Frames of Multi-storey Buildings with Consideration for Yield of Nodal Interfaces of Precast Concrete Structures]. OAO «TsNIIPromzdaniy» Publ., 2002, 39 p.
  13. SNiP 2.01.07—85*. Nagruzki i vozdeystviya [Construction Rules and Regulations 2.01.07—85*. Loads and Effects]. Moscow, FGUP TsPP Publ., 2005, 44 p.
  14. GOST 11701—84. Metody ispytaniy na rastyazhenie tonkikh listov i lent [State Standard 11701—84. Methods of Tensile Strength Testing of Thin Sheets and Strips]. 10 p.
  15. SNiP II-23—81*. Stal’nye konstruktsii. Normy proektirovaniya [Construction Rules and Regulations II-23—81*. Steel Structures. Design Regulations]. Moscow, GUP TsPP Publ., 2001, 90 p.

Download

Results 1 - 1 of 1