-
Golovin Nikolay Grigor'evich -
Moscow State University of Civil Engineering (MGSU)
Candidate of Technical Sciences, Associate Professor, Professor, Chair, Department of Reinforced Concrete and Masonry Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Bedov Anatoliy Ivanovich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Candidate of Technical Sciences, Professor, Department of Reinforced Concrete and Masonry Structures, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Silant'ev Aleksandr Sergeevich -
Moscow State University of Civil Engineering (MGSU)
Candidate of Technical Sciences, Senior lecturer, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Voronov Aleksandr Alekseevich -
MOSOBLSTROYTSNIL
the First Deputy Director, MOSOBLSTROYTSNIL, 29 Olimpiyskiy prospect, Mytishchi, 141006, Moscow Region, office 602;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
Cracking of different nature may occur in the process of construction of multi-storeyed reinforced concrete buildings. Usually, the diagnosis of their causes is not complicated. However, in some cases the diagnosis is a sophisticated problem due to the special distribution of rigidities over the building frame.The article focuses on the technique of the three-dimensional modeling and analysis of building frame elements based on shrinkage cracks using the finite element analysis in Abaqus. The concrete damaged plasticity model is used to describe reinforcement steel. Simulation of cracking process was made using the partial model of a building having solid elements (for the concrete) and membrane and beam elements (for the reinforcement). Two cycles of simulation were implemented. Firstly, the calculation of crack propagation due to the nominal load was made. Simulation showed no cracks in the mid-span zones of beams. The second step was the simulation of crack propagation in case of shrinkage deformation propagation. This evaluation showed the possibility of crack formation and growth inside beams and slabs. The first shrinkage cracks appeared 25 days after the concrete curing completion. The first shrinkage cracks appeared in the midspan zone of beams in the aftermath of 29 days.Simulation of shrinkage deformations in the floor structure has showed that formation and propagation of cracks in the floor beams is possible. As a result of calculations, cracks appeared in the bottom part of the beams. In some beams, formation of shrinkage cracks may occur solely in the supports.
DOI: 10.22227/1997-0935.2013.10.36-42
References
- Abaqus Documentation: Abaqus Analysis User's manual. Materials. Other plasticity models. Concrete. 2010.
- Kenneth H. Huebner, Donald L. Dewhirst, Douglas E. Smith, Ted G. Byrom. The finite element method for Engineers. A Wiley-Interscience Publication, John Wiley&sons, Inc., 2001, pp. 17—73.
- Reddy J.N. An introduction to Nonlinear finite element analysis. Oxford University Press, 2004, pp. 327—378.
- Geniev G.A., Kissyuk V.N., Tyupin G.A. Teoriya plastichnosti betona i zhelezobetona [Theory of Plasticity of Concrete and Reinforced Concrete]. Moscow, Stroyizdat Publ., 1974.
- Silant'ev A.S. Raschet prochnosti naklonnykh secheniy izgibaemykh zhelezobetonnykh elementov metodom konechnykh elementov v KE-kompleksakh Ansys i Abaqus [Strength Calculation of Sloping Sections of Flexible Reinforced Concrete Members Using the Method of Finite Elements in Ansys and Abaqus]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2012, no. 2, pp. 71—74.
- Rekomendatsii po uchetu polzuchesti i usadki betona pri raschete betonnykh i zhelezobetonnykh konstruktsiy [Guidelines to Analysis of Concrete Creep and Shrinkage in the Process of Calculation of Concrete and Reinforced Concrete Structures]. Moscow, Stroyizdat Publ., 1988.
- Tamrazyan A.G., Esayan S.G. Mekhanika polzuchesti betona [Concrete Creep Mechanics]. Moscow, MGSU Publ., 2013.
- Abou-Zeid M. Control of Cracking in Concrete Structures. Report, ACI Committee 224. American Concrete Institute, 2001, pp. 12—16.
- Darwin D., Browning J., Deshpande S. Evaluating Free Shrinkage of Concrete for Control of Cracking in Bridge Decks. The university of Kansas center for research. Structural Engineering and Engineering Materials. SM Report 89. 2007, pp. 90—95.
- Mertol H.C., Rizkalla S., Zia P., Mirmiran A. Creep and Shrinkage Behavior of High-Strength Concrete and Minimum Reinforcement Ratio for Bridge Columns. Chicago, 2010, PCI Journal, vol. 55, no. 3, pp. 138—154.
-
Korsun Vladimyr Ivanovych -
Donbas National Academy of Civil Engineering and Architecture (DonNASA)
Doctor of Technical Sciences, Professor, Head, Department of Reinforced Concrete Structures, Donbas National Academy of Civil Engineering and Architecture (DonNASA), 2 Derzhavin str., Makeyevka, Donetsk region, Ukraine, 86123;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Korsun Artem Vladimirovych -
Donbas National Academy of Civil Engineering and Architecture (DonNASA)
Candidate of Technical Sciences, Associate Professor, Department of Reinforced Concrete Structures, Donbas National Academy of Civil Engineering and Architecture (DonNASA), 2 Derzhavin str., Makeyevka, Donetsk region, Ukraine, 86123;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The most effective way to reduce the structure mass, labor input and expenses for its construction is to use modern high-performance concrete of the classes С50/60… С90/105, which possess high physical and mathematic characteristics. One of the constraints for their implementation in mass construction in Ukraine is that in design standards there are no experimental data on the physical and mathematic properties of concrete of the classes more than С50/60. Also there are no exact statements on calculating reinforced concrete structures made of high-performance concretes.The authors present the results of experimental research of the scale effect and short-term and long-term heating up to +200 ° C influence on temperature and shrinkage strain, on strength and strain characteristics under compression and tensioning of high-strength modified concrete of class C70/85. The application of high performance concretes is challenging in the process of constructing buildings aimed at operating in high technological temperatures: smoke pipes, coolers, basins, nuclear power plants' protective shells, etc. Reducing cross-sections can lead to reducing temperature drops and thermal stresses in the structures.
DOI: 10.22227/1997-0935.2014.3.179-188
References
- Korsun A.V. Osobennosti deformirovaniya i razrusheniya vysokoprochnykh modifitsirovannykh betonov v usloviyakh nagreva do +200 ?Ñ [Features of Deformation and Destruction of High Performance Modifi ed Concretes in Case of Heating up to +200 °Ñ]. Vestnik DonNASA [Proceedings of Donbas National Academy of Civil Engineering and Architecture]. 2007, no. 1(63), pp. 116—121.
- Korsun V.I. Napryazhenno-deformirovannoe sostoyanie zhelezobetonnykh konstruktsiy v usloviyakh temperaturnykh vozdeystviy [Stress and Strain State of Reinforced Concrete Structures under Thermal Impacts]. Makeevka, DonGASA Publ., 2003, 153 p.
- GOST 24452—80. Betony. Metody opredeleniya prizmennoy prochnosti, modulya uprugosti i koeffitsienta Puassona [Russian State Standard 24452—80. Concretes. Methods of Defining Prism Strength, Elastic Module and Poisson's ratio]. Moscow, Izdatel'stvo standartov Publ., 1980.
- CEN: Eurocode 2 (2004). Design of Concrete Structures: Part 1-1 General Rules and Rules for Buildings, EN 1992-1-1: 2004.
- Korsun V.I., Kalmykov Yu.Yu. Neodnorodnost' prochnostnykh i deformatsionnykh svoystv betona po ob"emu massivnykh elementov konstruktsiy [Heterogeneity of Strength and Strain Properties of Concrete According to the Size of Massive Construction Elements]. Sovremennye problemy stroitel'stva [Current Problems in Construction]. Donetsk, Donetskiy PromstroyNIIproekt, OOO «Lebed'» Publ. 2002, vol. 2, pp. 95—102.
-
Bataev Dena Kerim-Sultanovich -
Complex Institute named after Kh.I. Ibragimov of the Russian Academy of Sciences (CI RAS)
Doctor of Engineering, professor, academician of the Academy of Sciences of the Chechen Republic, director, Complex Institute named after Kh.I. Ibragimov of the Russian Academy of Sciences (CI RAS), 21a Staropromyslovsky shosse, Grozny, 364051, Chechen Republic.
-
Gaziev Minkail Akhmetovich -
Grozny State Technological Oil University named after Academician M.D. Millionshchikov (GSTOU named after Academician M.D. Millionshchikov)
Candidate of Engineering, associate professor of the building structures department, Grozny State Technological Oil University named after Academician M.D. Millionshchikov (GSTOU named after Academician M.D. Millionshchikov), 100 Ordzhonikidze square, Grozny, 364051, Chechen Republic.
-
Pinsker Vadim Aronovich -
Centre for cellular concretes at NP “North-West Construction Chamber”
Candidate of Engineering, scientific adviser, Centre for cellular concretes at NP “North-West Construction Chamber”, off. 308, 1/3 Zodchego Rossi str., Saint-Petersburg, 191023;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Chepurnenko Anton Sergeevich -
Don State Technical University (DGTU)
Candidate of Engineering Science, teaching assistant of the strength of materials department, Don State Technical University (DGTU), 162 Sotsialisticheskaya str., Rostov-on-Don, 344022;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The task of comprehensive analysis presented in this article is a development of theory of calculation of shrinkage stresses in cellular concrete wall panels; such stresses occur due to carbonation of concrete because of the creep of material. Analytical dependences characterizing the influence of carbonation on the modulus of elasticity, shrinkage and creep of autoclaved cellular concrete, as well as the regularity of variation of carbonation degree as per thickness of the wall panels depending on time, were obtained. The proposed theory of calculation of shrinkage stresses in cellular concrete wall panels, with account of concrete creep, makes it possible to predict the influence of carbonation processes on crack resistance thereof, and thus to develop measures of technological and structural nature, in order to improve their operational reliability and durability.
DOI: 10.22227/1997-0935.2016.12.11-22