ENGINEERING RESEARCH AND EXAMINATION OF BUILDINGS. SPECIAL-PURPOSE CONSTRUCTION

TECHNOLOGY OF EXAMINATION OF PLASTERED SURFACES OF COMPLEX ARCHITECTURAL FORMS OF BUILDING STRUCTURES USING METHODS OF GEOMETRICAL MODELING

Vestnik MGSU 11/2012
  • Tamrazyan Ashot Georgievich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, full member, Russian Engineering Academy, head of the directorate, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe Shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Zholobov Aleksandr Leonidovich - Astrakhan Institute of Civil Engineering (AICI) Candidate of Technical Sciences, Professor, Department of Industrial and Civil Engineering, Astrakhan Institute of Civil Engineering (AICI), 18 Tatishcheva st., Astrakhan, 414056, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Ivannikova Nadezhda Aleksandrovna - Astrakhan Institute of Civil Engineering (AICI) postgraduate student, Department of Industrial and Civil Engineering, Astrakhan Institute of Civil Engineering (AICI), 18 Tatishcheva st., Astrakhan, 414056, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 125 - 130

In the course of construction and restructuring of unique buildings and structures, any architect
faces the need to design complex surfaces that have curvilinear geometrical forms that cannot be
neglected. In turn, designs with complex curvilinear geometrical forms require higher skills in their
development, as the complexity of their design and implementation is a lot higher than that of elements
that have flat surfaces.
The value of plaster cannot be underestimated. Plaster applied to surfaces of various buildings
and structures (walls, partitions, columns) flattens the surface, shapes it up and protects it from
moisture and fire; it improves resistance to heat transfer; it reduces air permeability and improves
the soundproofi ng properties of protected designs, etc.
All pre-set parameters of plaster are to constitute the subject of random inspections, and inspection
results are to be considered in the course of acceptance of any work. The most important
though hard to control parameters of plaster include:
bond strength, thickness, moisture content and density;
flatness or its radius of curvature;
deformation properties of the plaster layer versus deformation properties of the design.
Control over compliance with the design is hard to implement as curvilinear surfaces are located
at a significant height above the ground and/or the floor level. Therefore, there is a need to develop a
non-destructive method of quality assurance of construction, restructuring and finishing works.
The solution to the problem becomes possible due to development of specific hardware and
software designated for remote though accurate identification of the surface curvature.
The authors have developed a modified range-oriented laser methodology that employs angular
segments to remotely assess the flatness of the building structure and its radius of curvature and
to determine the deviation of its value from the designed one. The software also makes it possible
to implement the quality control of the work performed over the curved surfaces coated with various
types of plaster.
The proposed solutions have been pilot tested in practice, and they are ready for use in the
building industry, namely, in construction, repair and restructuring works.

DOI: 10.22227/1997-0935.2012.11.125 - 130

References
  1. TR 182—08. Tekhnicheskie rekomendatsii po nauchno-tekhnicheskomu soprovozhdeniyu i monitoringu stroitel’stva bol’sheproletnykh, vysotnykh i drugikh unikal’nykh zdaniy i sooruzheniy. [Technical Recommendations 182—08. Technical Recommendations concerning Scientific and Technical Support and Monitoring of Construction of Large-span, High-rise and Other Unique Buildings and Structures]. Moscow, GUP «NIIMosstroy» Publ., 2008, 36 p.
  2. SNiP 3.04.01—87. Izolyatsionnye i otdelochnye pokrytiya [Construction Norms and Regulations 3.04.01—87. Insulation and Finishing Coatings]. Minstroy Rossii [Ministry of Construction of Russia]. Moscow, GUP TsPP Publ., 1996, p.
  3. Tishkin D.D. Analiz eksperimental’nykh dannykh i rezul’tatov aprobatsii mekhanizirovannoy tekhnologii oshtukaturivaniya sten pomeshcheniy [Analysis of Experimental Data and Results of Testing of Technology of Power-driven Plaster Application onto Walls of Premises]. Vestnik grazhdanskikh inzhenerov [Bulletin of Civil Engineers]. 2011, no. 1, pp. 91—97.
  4. Ivannikova N.A., Zholobova O.A. Problema obespecheniya zadannogo profi lya krivolineynykh poverkhnostey trudnodostupnykh stroitel’nykh konstruktsiy [The Problem of Compliance with the Preset Pattern of Curvilinear Surfaces of Hard-to-access Structural Elements]. Materials of Scientific and Practical Conference. Stroitel’stvo-2012 [Construction’2012]. Rostov-on-Don, Rostov State University of Civil Engineering, 2012, pp. 137—138.
  5. GOST 26433.2—94. Sistema obespecheniya tochnosti geometricheskikh parametrov v stroitel’stve. Pravila vypolneniya izmereniy parametrov zdaniy i sooruzheniy. [System of Assurance of Accuracy of Geometrics in Building Engineering. Building and Structure Measurement Rules]. Moscow, Izd-vo standartov publ., 1996, 42 p.
  6. MDS 11-17.2004. Pravila obsledovaniya zdaniy, sooruzheniy i kompleksov bogosluzhebnogo I vspomogatel’nogo naznacheniya [Rules of Inspection of Buildings, Structures, Liturgic and Supplementary Facilities]. Moscow, 2005, 48 p.
  7. Rodzhers D., Adams Dzh. Matematicheskie osnovy mashinnoy grafiki [Mathematical Fundamentals of Computer Graphics]. Moscow, Mir Publ., 2001, 604 p.

Download

Results 1 - 1 of 1