DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

REVIEW OF SIMPLIFIED SEISMIC ANALYSIS PROCEDURES FOR STORAGE TANKS

Vestnik MGSU 1/2017 Volume 12
  • Shigapov Rustam Ramilevich - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student, Department of Theoretical Mechanics and Aerodynamics, Institute of Fundamental Science, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoye Shosse, Moscow, 129337, Russian Federation.
  • Koval’chuk Oleg Aleksandrovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Theoretical Mechanics and Aerodynamics, Director of Institute of Fundamental Science, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoye Shosse, Moscow, 129337, Russian Federation.

Pages 53-62

This paper presents a review of simplified procedures for design of earthquake-resistant cylindrical tanks included in codes and standards of several countries. A brief excursus on the history of research is given. A paper of G. Housner is the basis for the latter studies. A mechanical model of two inertia masses is offered in this paper. This mechanical model with some adjustments (such as adding a one more mass to consider the flexibility of tank ringwall and foundation) is used in the latter works. Aside from papers using paradigm of Housner’s work, some alternative methods are reviewed. These methods are mentioned in 1) G. Mano’s paper, recommended by ASCE as alternative method; 2) Russian Recommendations of TsNIISK (Central Scientific Research Institute for Building Structures) by Goldenblat and Nikolaenko, also mentioned in a monograph of A.N. Birbrayer, concerning seismic analysis of nuclear plant facilities. Codes reviewed in this paper belong to the following regions: Russia, USA, New Zealand, Europe. These codes are: Appendix E of API 650; AWWA D-100; Eurocode 8, part 4; Red Book of New Zealand National Society for Earthquake Engineering and Russian code STO SA-03-002-2009. In order to make a comparison of the assessment procedures mentioned in the codes reviewed a few tables containing major expressions are submitted. The expressions are modified so that it is possible to compare them. The parameters of seismic analysis given in these tables are: impulsive and convective time periods of tank, equivalent base shear and overturning moment, impulsive and convective hydrodynamic pressure distribution on tank wall and maximum sloshing wave height.

DOI: 10.22227/1997-0935.2017.1.53-62

Download

Geo-enviromental monitoring system of the oil storages on petrol stations

Vestnik MGSU 3/2014
  • Shimenkova Anastasiya Anatol'evna - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Potapov Aleksandr Dmitrievich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Head, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 212-219

In large cities, fuel consumption is growing rapidly, and therefore the number of filling stations. And they are a source of anthropogenic impact on the environment and represent current scientific and practical task, because recently no research was conducted into the optimization of monitoring systems in the construction of gas station storage tanks, and no activity on replacing the obsolete design with new storage tanks. In this regard, much attention should be paid to the creation of geo-environmental systems integrated assessment of the environment, as well as modeling and forecasting various negative situations. In the modern world, the creation of such systems is possible with the help of modern computer tools such as geographic information systems.

DOI: 10.22227/1997-0935.2014.3.212-219

References
  1. Graf M. La. Obzor osnovnoy problemy vzaimodeystviya toplivnogo biznesa i ekologii v mire [Overview of the Main Problem of Interaction of the Fuel Business and Ecology in the World] Sbornik dokladov Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Ekologicheskaya i pozharnaya bezopasnost' sovremennykh AZS» [Collection of the International Scientific-Practical Conference "Environmental and Fire Safety of Modern Gas Stations"]. Moscow, 1998, ðð. 10—12.
  2. Lampert F. Vybrosy parov benzina i reshenie etoy problemy v stranakh Evropeyskogo Soyuza [Gasoline Vapor Emissions and Solution of this Problem in the Countries of the EU]. Sbornik dokladov Mezhdunarodnoy nauchno-prakticheskoy konfe-rentsii «Ekologicheskaya i pozharnaya bezopasnost' sovremennykh AZS» [Collection of the International Scientific-Practical Conference "Environmental and Fire Safety of Modern Gas Stations"]. Moscow, 1998, ðð. 35—39.
  3. Belyaev A.Yu. Otsenka vliyaniya avtozapravochnykh stantsiy (AZS) na geologicheskuyu sredu [Assessment of the Impact of Gas Stations on the Geological Environment]. Sbornik Mezhdunarodnoy konferentsii «Lomonosov—2000: molodezh' i nauka na rubezhe XXI veka» [Collection of International Conference «Lomonosov—2000: Youth and Science of the 21st Century»]. Moscow, 2000, pp. 178.
  4. Belyaev A. Yu., Kashperyuk P.I. Issledovaniya zagryazneniya poverkhnostnogo stoka s territorii AZS (na primere mnogofunktsional'nykh avtozapravochnykh kompleksov «BP» v g. Moskve) [Investigation of Pollution of Surface Runoff Caused by a Filling Station (on the Example of Multifunctional Filling Stations «BP», Moscow)] Sbornik Akademicheskie chteniya N.A. Tsitovicha [Collection of Academic Readings N.A. Tsitovich]. Moscow, 2003, pp.190—194.
  5. Dhanapal G. GIS-based Environmental and Ecological Planning for Sustainable Development. January 2012. Available at: http://www.geospatialworld.net. Date of access: 05.02.14.
  6. Antonio Miguel Mart?nez-Gra?a, Jose Luis Goy, Caridad Zazo. Cartographic-Environmental Analysis of the Landscape in Natural Protected Parks for His Management Using GIS. Application to the Natural Parks of the “Las Batuecas-Sierra de Francia” and “Quilamas” (Central System, Spain). Journal of Geographic Information System. February 2013, vol. 5, no. 1, ðp. 54—68. DOI: 10.4236/jgis.2013.51006.
  7. Reshma Parveen, Uday Kumar. Integrated Approach of Universal Soil Loss Equation (USLE) and Geographical Information System (GIS) for Soil Loss Risk Assessment in Upper South Koel Basin, Jharkhand. Journal of Geographic Information System. December 2012, vol. 4, no. 6, ðp. 588—596. DOI: 10.4236/jgis.2012.46061.
  8. Gol'dberg V.M., Zverev V. P., Arbuzov A. I., Kazennov S. M., Kovalevskiy Yu. V., Putilina V. Tekhnogennoe zagryaznenie prirodnykh vod uglevodorodami i ego ekologicheskie posledstviya [Anthropogenic Pollution of Natural Waters with Hydrocarbons, and its Environmental Consequences]. Moscow. Nauka Publ., 2001,125 p.
  9. Dobrovol'skiy S.A., Kashperyuk P.I., Potapov A.D. K otsenke vliyaniya avtomobil'nykh vybrosov na zagryaznenie gruntov tyazhelymi elementami v razlichnykh zonakh polos gorodskikh avtodorog [To the Question of Assessing the Impact of Automobile Emissions on the Pollution of Soils with Heavy Elements in Different Areas of Urban Roads] Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 1, pp. 299—304.
  10. Dobrovol'skiy S.A. O zagryaznenii uchastkov vdol' avtomagistraley g. Moskvy tyazhelymi metallami [On the Pollution of the Areas along the Highways of Moscow by Heavy Metals]. Inzhenernye izyskaniya [Engineering Research]. 2010, no. 10, pp. 52—56.
  11. Dobrovol'skiy S.A., Potapov A.D., Kashperyuk P.I. Nekotorye podkhody k postroeniyu modeli zagryazneniya vozdushnoy sredy avtotransportnymi vybrosami [Some Approaches to Building a Model of Air Pollution by Road Transport Emissions]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 4, pp.155—158.
  12. Timofeev S.S., Perminova D.V. Otsenka neuchtennoy ekologicheskoy nagruzki sistemy nefteproduktoobespecheniya na atmosferu goroda Irkutska i Irkutskoy oblasti [Assessment of unaccounted environmental load of the system of oil products supply to the atmosphere of the city of Irkutsk and the Irkutsk on public]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of the Irkutsk State Technical University]. 2011, no. 3, vol. 50, pð. 25—29.
  13. Chernyavskaya T.A. Mesto geoinformatsionnoy sistemy v informatsionnom prostranstve neftegazodobyvayushchey kompanii [Place of GIS in the Information Space of an Oil and Gas Company]. Zhurnal «ArcReview» [Journal "ArcReview"]. 2011, no. 1(56). Available at: http://www.dataplus.ru. Date of access: 01.02.14.
  14. Alekseev V.V., Kurakina N.I., Orlova N.V., Geoinformatsionnaya sistema monitoringa vodnykh ob"ektov i normirovaniya ekologicheskoy nagruzki [The Geoinformational System of Water Objects Monitoring and the Normalization of the Ecological Load]. Zhurnal «ArcReview» [Journal "ArcReview"]. 2006, no. 1(36). Available at: http://www.dataplus.ru. Date of access: 01.02.14
  15. Alekseev V.V., Kurakina N.I., Zheltov E.V. Sistema modelirovaniya rasprostraneniya zagryaznyayushchikh veshchestv i otsenki ekologicheskoy situatsii na baze GIS [System of Simulating the Spread of Pollutants and Estimation of the Ecological Situation on the Basis of GIS]. Informatsionnye tekhnologii modelirovaniya i upravleniya [Information Technologies of Modeling and Control]. Voronezh, 2005, no. 5(23), pp. 765—769.

Download

Results 1 - 2 of 2