DEVELOPMENT AND IMPLEMENTATION OF METHODOLOGICAL PRINCIPLES OF ECOLOGICAL HOUSE CONSTRUCTION (THE CASE OF BUSINESS PROJECT OF THE AUTONOMOUS ENERGY-EFFICIENT COMPLEX «ECO-HOUSE»)

Vestnik MGSU 4/2017 Volume 12
  • Shevchenko Andrey Stanislavovich - CJSC National Engineering Company , CJSC National Engineering Company, Office А504, А506, 2 Gorbunova str., bldg. 204, Moscow, Russian Federation, 121596.
  • Velichko Evgeny Grigorievich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Construction Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, Russian Federation, 129337.
  • Tskhovrebov Eduard Stanislavovich - Research Institute “Center for Environmental Industrial Policy” (Research Institute “CEIP”) Candidate of Economics, Associate Professor, Deputy Director, Research Institute “Center for Environmental Industrial Policy” (Research Institute “CEIP”), 42 Olimpiyskiy pr., Mytishchi, Moscow Region, Russian Federation, 141006.

Pages 415-428

The strategic course on energy efficiency, resource saving, and environmental safety as a basis for sustainable development of our country brings to the forefront the issues related to ecological house construction or “green” construction. Now, these issues are of particular relevance and research and practical importance. In this article, the main principles (criteria) for ecological house construction have been defined, and an attempt has been made to formulate a normative and methodological justification for each of them, taking into account the generalization and analysis of the knowledge accumulated on this topic. The presented principles of ecological house construction are updated on the example of a specific territory and construction site. They are implemented in the construction business project of an autonomous energy-efficient complex “Eco-house” with innovative treatment facilities and resource-saving operation technologies in one of the most ecologically clean areas of the Moscow Region. The main objective of this project is to reach to a fundamentally new level of environmental and economic development of architectural and construction thought, considering the eco-house as a natural anthropogenic ecosystem with a positive ecological resource that provides autonomous existence, energy efficiency, resource saving and environmental safety as the main principles of sustainable development. The business project satisfies to all the town-planning, technical, sanitary-hygienic, environmental requirements for selecting a land plot for individual housing construction, its layout, construction technologies, construction materials, structures and products, residential buildings and premises, nature conservation facilities, resource-saving activities and recycling eco-house waste products into useful secondary products used hereafter in the eco-house processes of management and operation.

DOI: 10.22227/1997-0935.2017.4.415-428

Download

Research of the environmentally safe waste-based building materials

Vestnik MGSU 9/2018 Volume 13
  • Mymrin Vsevolod A. - Technological Federal University of Parana Professor, Technological Federal University of Parana, Avenida de deputado Heitor Alencar Furtado, 5000, Ecoville, Curitiba, Brasil.
  • Tolmacheva Natalia A. - Irkutsk National Research Technical University (INRTU) senior research scientist, Irkutsk National Research Technical University (INRTU), 83 Lermontova st., Irkutsk, 664074, Russian Federation.
  • Zelinskaya Elena V. - Irkutsk National Research Technical University (INRTU) Professor, Irkutsk National Research Technical University (INRTU), 83 Lermontova st., Irkutsk, 664074, Russian Federation.
  • Kurina Anastasia V. - Irkutsk National Research Technical University (INRTU) post-graduate student аСМ-16-1, Irkutsk National Research Technical University (INRTU), 83 Lermontova st., Irkutsk, 664074, Russian Federation.
  • Garashchenko Aleksandr A. - Irkutsk National Research Technical University (INRTU) master’s student ISTm-18-1, Irkutsk National Research Technical University (INRTU), 83 Lermontova st., Irkutsk, 664074, Russian Federation.

Pages 1143-1153

Introduction: in the article the estimation of new ecological safety biopositive polymer-mineral composite (BPMC) building materials obtained with the use of technogenic wastes is considered. This approach is one of the ways to solve the problem of improving the environmental safety of the environment. Materials and methods: BMPC environmental safety studies were performed using microstructural, X-ray and elemental analysis methods, studying physical and mechanical properties and fire safety. Man-caused wastes inventory and classificational ecological assessment by the lif e cycle was carried out. Results: the conformity of the Baikal region man-caused wastes (such as fly ash from heat-power engineering, aluminosilicate microspheres, isolated from bottom ash wastes, marble dust (microcalcite), industrial waste of polyvinylchloride (PVC), as well as small-sized mica waste in the form of vermiculite) to the basic characteristics that allow to use this wastes in the production of BMPC-products by extrusion as fillers. The man-caused wastes ecological utilization mechanism was developed. Composition of composite materials, in which industrial PVC waste is used as the matrix, and fly ash, ash microspheres, marble dust and vermiculite as fillers, were developed. The proposed technology for the production of BPMC products allows the use of technogenic wastes in a wide range in the composition from 20 to 60 %. The new biopozitive polymer-mineral composite products properties were studied. Conclusions: the conducted studies of the composition and properties of samples obtained using different types of man-made waste in the polymer-mineral composites production proved that the production of BPMC products ensures the building materials and environmental safety through the reliable and durable materials production that comply with regulatory requirements. According to the life cycle environmental safety assessment, the waste products obtained on the basis of waste have significant advantages in terms of a technical and environmental characteristics set.

DOI: 10.22227/1997-0935.2018.9.1143-1153

Download

ECOLOGICAL SAFETY OF CONSTRUCTION MATERIALS : BASIC HISTORICAL STAGES

Vestnik MGSU 1/2017 Volume 12
  • Velichko Evgeniy Georgievich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Construction Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Tskhovrebov Eduard Stanislavovich - Research Institute “Center for Environmental Industrial Policy” (Research Institute “CEIP”) Candidate of Economics, Associate Professor, Deputy Director, Research Institute “Center for Environmental Industrial Policy” (Research Institute “CEIP”), 42 Olimpiyskiy pr., Mytishchi, Moscow Region, Russian Federation, 141006.

Pages 26-35

Environmentally safe construction products are materials and products of construction purpose made of renewable natural resources and natural environment components with minimum spend of natural resources and energy, and the process of handling thereof (extraction of raw materials for production of the aforesaid materials and products, manufacture, transportation, use in engineering structures, processing, recycling, burial in natural environment) does not adversely affect neither humans nor environment. The article considers the basic historical stages of use of environmentally friendly construction materials in industrial and civil construction, starting from antiquity and ending with modern age. Review materials on the use of safe natural products such as wood, stone, thatch, peat, clay and other types of environmentally friendly materials in construction are presented. Properties of natural materials that ensure environmental safety of buildings, structures and premises, sanitary and hygienic requirements, coziness and comfort thereof for humans are analyzed. It is concluded that at present time the construction of high quality, comfortable, ecologically safe housing at affordable prices which is based on environmentally friendly technologies, resource and energy saving, construction materials safe for human health, should become one of the main priorities of economic and environmental policy of Russia.

DOI: 10.22227/1997-0935.2017.1.26-35

Download

Geo-enviromental monitoring system of the oil storages on petrol stations

Vestnik MGSU 3/2014
  • Shimenkova Anastasiya Anatol'evna - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Potapov Aleksandr Dmitrievich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Head, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 212-219

In large cities, fuel consumption is growing rapidly, and therefore the number of filling stations. And they are a source of anthropogenic impact on the environment and represent current scientific and practical task, because recently no research was conducted into the optimization of monitoring systems in the construction of gas station storage tanks, and no activity on replacing the obsolete design with new storage tanks. In this regard, much attention should be paid to the creation of geo-environmental systems integrated assessment of the environment, as well as modeling and forecasting various negative situations. In the modern world, the creation of such systems is possible with the help of modern computer tools such as geographic information systems.

DOI: 10.22227/1997-0935.2014.3.212-219

References
  1. Graf M. La. Obzor osnovnoy problemy vzaimodeystviya toplivnogo biznesa i ekologii v mire [Overview of the Main Problem of Interaction of the Fuel Business and Ecology in the World] Sbornik dokladov Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Ekologicheskaya i pozharnaya bezopasnost' sovremennykh AZS» [Collection of the International Scientific-Practical Conference "Environmental and Fire Safety of Modern Gas Stations"]. Moscow, 1998, ðð. 10—12.
  2. Lampert F. Vybrosy parov benzina i reshenie etoy problemy v stranakh Evropeyskogo Soyuza [Gasoline Vapor Emissions and Solution of this Problem in the Countries of the EU]. Sbornik dokladov Mezhdunarodnoy nauchno-prakticheskoy konfe-rentsii «Ekologicheskaya i pozharnaya bezopasnost' sovremennykh AZS» [Collection of the International Scientific-Practical Conference "Environmental and Fire Safety of Modern Gas Stations"]. Moscow, 1998, ðð. 35—39.
  3. Belyaev A.Yu. Otsenka vliyaniya avtozapravochnykh stantsiy (AZS) na geologicheskuyu sredu [Assessment of the Impact of Gas Stations on the Geological Environment]. Sbornik Mezhdunarodnoy konferentsii «Lomonosov—2000: molodezh' i nauka na rubezhe XXI veka» [Collection of International Conference «Lomonosov—2000: Youth and Science of the 21st Century»]. Moscow, 2000, pp. 178.
  4. Belyaev A. Yu., Kashperyuk P.I. Issledovaniya zagryazneniya poverkhnostnogo stoka s territorii AZS (na primere mnogofunktsional'nykh avtozapravochnykh kompleksov «BP» v g. Moskve) [Investigation of Pollution of Surface Runoff Caused by a Filling Station (on the Example of Multifunctional Filling Stations «BP», Moscow)] Sbornik Akademicheskie chteniya N.A. Tsitovicha [Collection of Academic Readings N.A. Tsitovich]. Moscow, 2003, pp.190—194.
  5. Dhanapal G. GIS-based Environmental and Ecological Planning for Sustainable Development. January 2012. Available at: http://www.geospatialworld.net. Date of access: 05.02.14.
  6. Antonio Miguel Mart?nez-Gra?a, Jose Luis Goy, Caridad Zazo. Cartographic-Environmental Analysis of the Landscape in Natural Protected Parks for His Management Using GIS. Application to the Natural Parks of the “Las Batuecas-Sierra de Francia” and “Quilamas” (Central System, Spain). Journal of Geographic Information System. February 2013, vol. 5, no. 1, ðp. 54—68. DOI: 10.4236/jgis.2013.51006.
  7. Reshma Parveen, Uday Kumar. Integrated Approach of Universal Soil Loss Equation (USLE) and Geographical Information System (GIS) for Soil Loss Risk Assessment in Upper South Koel Basin, Jharkhand. Journal of Geographic Information System. December 2012, vol. 4, no. 6, ðp. 588—596. DOI: 10.4236/jgis.2012.46061.
  8. Gol'dberg V.M., Zverev V. P., Arbuzov A. I., Kazennov S. M., Kovalevskiy Yu. V., Putilina V. Tekhnogennoe zagryaznenie prirodnykh vod uglevodorodami i ego ekologicheskie posledstviya [Anthropogenic Pollution of Natural Waters with Hydrocarbons, and its Environmental Consequences]. Moscow. Nauka Publ., 2001,125 p.
  9. Dobrovol'skiy S.A., Kashperyuk P.I., Potapov A.D. K otsenke vliyaniya avtomobil'nykh vybrosov na zagryaznenie gruntov tyazhelymi elementami v razlichnykh zonakh polos gorodskikh avtodorog [To the Question of Assessing the Impact of Automobile Emissions on the Pollution of Soils with Heavy Elements in Different Areas of Urban Roads] Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 1, pp. 299—304.
  10. Dobrovol'skiy S.A. O zagryaznenii uchastkov vdol' avtomagistraley g. Moskvy tyazhelymi metallami [On the Pollution of the Areas along the Highways of Moscow by Heavy Metals]. Inzhenernye izyskaniya [Engineering Research]. 2010, no. 10, pp. 52—56.
  11. Dobrovol'skiy S.A., Potapov A.D., Kashperyuk P.I. Nekotorye podkhody k postroeniyu modeli zagryazneniya vozdushnoy sredy avtotransportnymi vybrosami [Some Approaches to Building a Model of Air Pollution by Road Transport Emissions]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 4, pp.155—158.
  12. Timofeev S.S., Perminova D.V. Otsenka neuchtennoy ekologicheskoy nagruzki sistemy nefteproduktoobespecheniya na atmosferu goroda Irkutska i Irkutskoy oblasti [Assessment of unaccounted environmental load of the system of oil products supply to the atmosphere of the city of Irkutsk and the Irkutsk on public]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of the Irkutsk State Technical University]. 2011, no. 3, vol. 50, pð. 25—29.
  13. Chernyavskaya T.A. Mesto geoinformatsionnoy sistemy v informatsionnom prostranstve neftegazodobyvayushchey kompanii [Place of GIS in the Information Space of an Oil and Gas Company]. Zhurnal «ArcReview» [Journal "ArcReview"]. 2011, no. 1(56). Available at: http://www.dataplus.ru. Date of access: 01.02.14.
  14. Alekseev V.V., Kurakina N.I., Orlova N.V., Geoinformatsionnaya sistema monitoringa vodnykh ob"ektov i normirovaniya ekologicheskoy nagruzki [The Geoinformational System of Water Objects Monitoring and the Normalization of the Ecological Load]. Zhurnal «ArcReview» [Journal "ArcReview"]. 2006, no. 1(36). Available at: http://www.dataplus.ru. Date of access: 01.02.14
  15. Alekseev V.V., Kurakina N.I., Zheltov E.V. Sistema modelirovaniya rasprostraneniya zagryaznyayushchikh veshchestv i otsenki ekologicheskoy situatsii na baze GIS [System of Simulating the Spread of Pollutants and Estimation of the Ecological Situation on the Basis of GIS]. Informatsionnye tekhnologii modelirovaniya i upravleniya [Information Technologies of Modeling and Control]. Voronezh, 2005, no. 5(23), pp. 765—769.

Download

Environmental assessment of a city on the model of energy-ecological efficiency

Vestnik MGSU 12/2014
  • Kuzovkina Tat’yana Vladimirovna - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Construction of the Objects of Thermal and Nuclear Power, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 781-80-07; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 172-181

This article gives an overview of the analytical methodology for assessing the environmental safety in construction, the existing government programs in energy saving, and the analysis of the actual state of the investigated problem, proposed a method of assessment of environmental safety efficiency criteria of a city. The analysis is based on the data on housing and communal services of the City of Moscow. As a result of the consideration of the government programs and methods of assessing the environmental security in construction the conclusion was made that none of the programs reviewed and non of the methods include consideration of the relationship between environmental parameters of environmental security and energy efficiency (indicators of them are considered separately from each other). In order to determine the actual state of environmental safety analytical review was performed of energy efficiency programs of the government in Moscow and the methods of assessing the environmental safety of a construction. After considering a methodology for assessing the environmental safety of a construction, the author proposes to use the model for determining the indicator of efficiency of the city to ensure the environmental safety of the processes of life-support of the city, which takes into account the dependence of the parameters of environmental safety and energy efficiency. The author describes the criteria for selecting thr data on energy and environmental efficiency of the city. The article shows the sequence to identify the criteria for determining the indicator of efficiency of the city. In the article the author presents the results of ecological assessment of Moscow on the energy-ecological efficiency model, using the model defined performance indicators of the city to ensure environmental safety processes of life support of the city. The model takes into account the dependence of environmental safety parameters, environmental and energy efficiency. The correlation analysis of the effectiveness of the city of Moscow, the graphs for the regression assessment models of the data are described. The coefficient of efficiency indicators correlation of city support and the coefficient of life safety in the city are calculated. Performance indicator for Moscow in 2009-2012 is defined, which reflects the dependence of the processes of life support and life sustenance of the city. The proposed approach to the assessment of environmental safety may be used in the development of governmental programs on energy saving, as well as in the preparation of regulatory documents.

DOI: 10.22227/1997-0935.2014.12.172-181

References
  1. Korolevskiy K.Yu., Slesarev M.Yu. Sozdanie i perspektivy razvitiya kafedry MGSU «Tekhnicheskoe regulirovanie» [Formation and prospects of development of the Department of Civil Engineering Technical Regulation]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2008, no. 4, pp. 55—57. (In Russian)
  2. Negrebov A.I., Slesarev M.Yu., Telichenko V.I. Upravlenie proektami rekonstruktsii ob”ektov stroitel’stva po ekologicheskim trebovaniyam [Management of Reconstruction Projects of Construction Objects Accoeding to Ecological Requirements]. Mekhanizatsiya stroitel’stva [Mechanization of Construction]. 2002, no. 6, pp. 10—12. (In Russian)
  3. Energosberezhenie v gorode Moskve : Gosudarstvennaya programma goroda Moskvy na 2012—2016 gg. i na perspektivu do 2020 g. [Energy Saving in Moscow : State Program of Moscow City in 2012—2016 and Up to 2020]. Vestnik Mera i Pravitel’stva Moskvy [Proceedings of Moscow Major and Government]. 2011, no. 57, pp. 6—133. (In Russian)
  4. Prikaz Minenergo Rossii ot 30 iyunya 2014 g. ¹ 399 «Ob utverzhdenii metodiki rascheta znacheniy tselevykh pokazateley v oblasti energosberezheniya i povysheniya energeticheskoy effektivnosti, v tom chisle v sopostavimykh usloviyakh» [Order Russian ministry of Energy from 30.06.2014 no. 399 “Approving the Methods of Calculating the Targets Values in the Field of Energy Saving and Energy Efficiency, Including in Comparable Conditions]. LEKS-Konsalting. Available at: http://www.g-k-h.ru/upload/prikaz399.rtf. Date of access: 01.03.2013. (In Russian)
  5. Podprogramma energosberezheniya i povysheniya energeticheskoy effektivnosti Departamenta zhilishchno-kommunal’nogo khozyaystva i blagoustroystva goroda Moskvy [Sub-Programme on Energy Saving and Energy Efficiency Increase of the Department of Housing and Communal Services and Public Works of the City of Moscow]. Vestnik Mera i Pravitel’stva Moskvy [Proceedings of Moscow Major and Government]. 2008, no. 63, pp. 108—200. (In Russian)
  6. Polozhenie po provedeniyu energeticheskikh obsledovaniy organizatsiy RAO «EES Rossii» RD 153-34.9.09.162-00 [Regulations for Conducting Energy Investigations of Organizations of RAO “UES of Russia” RD 153-34.9.09.162-00]. Moscow, RAO «EES Rossii» Publ., 2000, 28 p. (In Russian)
  7. Fedorov M.P., Bocharov Yu.N., Porshnev G.P., Schislyaev S.M., Matveev I.A., Skvortsova I.V., Petkova A.P., Malinovskiy D.N., Dzektser N.N.N., Shkola A.V., Mityakov A.V. Patent 2439625 RF, MPK G01W. Sposob kompleksnogo energoekologicheskogo obsledovaniya energeticheskikh i promyshlennykh ob”ektov. ¹ 2010102375/28, Zayavl. 25.01.2010, opubl. 10.01.2012. Byul. ¹ 1 [Patent 2439625 RF, MPK G01W. Method of integrated energy-ecological survey of power and industrial facilities. No. 2010102375/28, appl. 25.01.2010, publ. 10.01.2012. Bulletin no. 1]. Patent Holder FGBOU VPO «SPbGPU», 16 p. (In Russian)
  8. BREEAM International New Construction Technical Manual: SD5075 Version: 2013.03/03/2014. Available at: http://www.breeam.org/page.jsp?id=109. Date of access: 01.03.2013.
  9. Foundations of the Leadership in Energy and Environmental Design, Environmental Rating System, A Tool for Market Transformation. U.S. Green Building Council. 2006, August. Available at: http://www.usgbc.org/Docs/Archive/General/Docs2039.pdf/. Date of access: 01.03.2013.
  10. Kukadia V., Upton S., Hall D. Control of Dust from Construction and Demolition Activities. RE Press, 2003. Available at: http://products.ihs.com/cis/Doc.aspx?AuthCode=&DocNum=262929. Date of access: 01.03.2013.
  11. Kukadia V., Upton S., Grimwood C. Controlling Particles, Vapour and Noise Pollution from Construction Sites — Set of Five Pollution Control Guides. BRE Press, 2003. Available at: http://www.brebookshop.com/details.jsp?id=144548. Date of access: 01.03.2013.
  12. Guidelines on Energy Efficiency of Lift & Escalator Installations. EMSD, 2007. Available at: http://www.emsd.gov.hk/emsd/e_download/pee/Guidelines_on_Energy_Efficiency_of_LiftnEsc_Installations_2007.pdf. Date of access: 01.03.2013.
  13. Nipkow J., Schalcher M. Energy Consumption and Efficiency Potentials of Lifts. Swiss Agency For Efficient Energy Use S.A.F.E. Available at: http://www.arena-energie.ch/d/_data/EEDAL-ID131_Lifts_Nipkow.pdf. Date of access: 01.03.2013.
  14. Zaytseva T.V. Ekologicheskaya bezopasnost’ ob”ektov zhilishchno-kommunal’nogo khozyaystva. Uchet vliyaniya meropriyatiy po energosberezheniyu i energoeffektivnosti [Environmental Safety of the Objects of Housing and Communal Services. Accounting for the Effects of Energy Saving and Energy Efficiency Measures]. Stroitel’stvo — formirovanie sredy zhiznedeyatel’nosti : sbornik dokladov XVI Mezhdunarodnoy mezhvuzovskoy nauchno-prakticheskoy konferentsii studentov, magistrantov, aspirantov i molodykh uchenykh (24—26 aprelya 2013 g., Moskva). Minobrnauki RF, MGSU [Construction — Forming Living Environment: Book of Reports Of The Sixteenth International Interuniversity Scientific And Practical Conference Of Students, Master And Postgraduate Students And Young Scientists (April, 24—26, 2013)]. Ministry of Education and Science of the Russian Federation, MGSU]. Moscow, MGSU Publ., 2013, no. 3 (6), pp. 596—601. (In Russian)
  15. Zaytseva T.V. Ekologicheskaya bezopasnost’ prirodno-tekhnicheskikh sistem, formiruemykh ob”ektami promyshlennogo, grazhdanskogo i gorodskogo stroitel’stva stroitel’stva [Environmental Security of Natural-Technical Systems Formed by Industrial, Civil and Urban Construction Objects]. Nauchnyy potentsial regionov na sluzhbu modernizatsii : mezhvuzovskiy sbornik nauchnykh statey [Scientific Potential of the Regions on Service of Modernization: Interuniversity Collection of Scientific Articles]. Astrakhan’, GAOU AO VPO «AISI» Publ., 2013, vol. 1, pp. 39—42. (In Russian)
  16. Zaytseva T.V. Rol’ energosberezheniya i energoeffektivnosti v zhilishchno-kommunal’nom khozyaystve goroda Moskvy [Energy Saving and Energy Efficiency Role in Housing and Communal Services of the City of Moscow]. Integratsiya, partnerstvo i innovatsii v stroitel’noy nauke i obrazovanii : sbornik dokladov Mezhdunarodnoy nauchnoy konferentsii [Integration, Partnership and Innovations in Construction Science and Education: Proceedings of the International Scientific Conference]. Moscow, MGSU Publ., 2013, pp. 351—353. (In Russian)
  17. Doklad rukovoditelya Departamenta prirodopol’zovaniya i okhrany okruzhayushchey sredy Moskvy A.O. Kul’bachevskogo na Kollegii Departamenta, posvyashchennoy itogam raboty v 2012 godu i planam na 2013 god [Report of the Head of the Department of Natural Resources Management and Environmental Protection of Moscow A.O. Kul’bachevskiy on the Department Board Dedicated to the Results of the Work in 2012 and Plans for 2013]. Available at: http://www.dpioos.ru/eco/ru/report_result/o_8635. Date of access: 01.03.2013. (In Russian)
  18. Doklad o sostoyanii okruzhayushchey sredy v gorode Moskve v 2011 godu [Report on the State of the Environment in the City of Moscow in 2011]. Available at: http://www.dpioos.ru/eco/ru/report_result/o_3992. Date of access: 01.11.2012. (In Russian)
  19. Doklad rukovoditelya Departamenta prirodopol’zovaniya i okhrany okruzhayushchey sredy goroda Moskvy A.O. Kul’bachevskogo «Ob osnovnykh napravleniyakh, rezul’tatakh deyatel’nosti Departamenta prirodopol’zovaniya i okhrany okruzhayushchey sredy goroda Moskvy v 2011 godu i zadachakh na 2012 god» [Report of the Head of the Department of Natural Resources Management and Environmental Protection of Moscow A.O. Kul’bachevskiy “On the Main Directions, Results of the work of the Department of Natural Resources and Environmental Protection of the City of Moscow in 2011 and tasks for 2013”]. Available at: http://www.dpioos.ru/eco/ru/report_result/o_4156. Date of access: 01.11.2012. (In Russian)
  20. Gosudarstvennaya programma goroda Moskvy «Energosberezhenie v gorode Moskve» na 2011, 2012—2016 gg.» [The State Program of Moscow “Energy Efficiency in Moscow in 2011, 2012—2016”]. Available at: http://dgkh.mos.ru/the-state-program/realizationof-the-state-programs/moscow-state-program-energosberezhanie-in-the-city-of-moscow-onthe-2011-2012-2016.php?. Date of access: 01.03.2013. (In Russian)
  21. Gosudarstvennaya programma Rossiyskoy Federatsii «Energoeffektivnost’ i razvitie energetiki» [The State Program of the Russian Federation “Energy Efficiency and Energy Development”]. Vestnik Mera i Pravitel’stva Moskvy [Proceedings of Moscow Major and Government]. 2014, no. 23, 160 p. (In Russian)

Download

STATE POLICY FUNDAMENTALS IN FORMATION OF A NATIONAL STANDARD OF "GREEN CONSTRUCTION" FOR ASSESSMENT OF ITEMS OF REAL PROPERTY

Vestnik MGSU 12/2012
  • Kolchigin Mikhail Aleksandrovich - Moscow State University of Civil Engineering (MGSU) assistant lecturer, Department of Construction of Thermal and Nuclear Power Plants, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Benuzh Andrey Aleksandrovich - Moscow State University of Civil Engineering (MGSU) engineer, Department of Construction of Thermal and Nuclear Power Plants, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 177 - 181

The authors analyze the problem of implementation of principles of "green construction" in the Russian Federation. Despite the availability of the appropriate legislation in the field of environmental safety of construction, there are no legal, social, or economic incentives that may boost development of "green" technologies.
Until recently, fundamentals of the state policy in the field of environmental protection of real estate development have not succeeded in motivating market players to implement advanced green technologies.
However, recently, the government has begun motivating the construction industry towards the use of "green" technologies. The first activity is aimed at improving the legislation and updating the international voluntary certification according to BREAM and LEED standards.
The result is the acceptance of the National Green Building Standard for real estate valuation that will open up new opportunities and prospects to the participants of the construction market. However, at the initial phase of implementation of "Fundamentals of the State Policy in the Field of Environmental Development of the Russian Federation", government authorities should provide their support to proponents of green buildings, including financial inflows.

DOI: 10.22227/1997-0935.2012.12.177 - 181

References
  1. Obrashchenie Moskovskoy gorodskoy dumy ot 21.02.2007 ¹ 5 «O prinyatii mer po prekrashcheniyu nezakonnoy gradostroitel’noy deyatel’nosti na territoriyakh Balashikhinskogo rayona, granichashchikh s natsional’nym parkom «Losinyy ostrov» [Address of Moscow City Duma no. 5 of 21.02.2007 «Actions Banning any Illegal Urban Development Activities in Balashikha District Area Bordering “Losinyy Ostrov” National Park].
  2. Kholopova E.N., Zakharova V.A. Ekologicheskaya ekspertiza: teoriya i praktika pravoprimeneniya [Environmental Review: Theory and Practice of Law Enforcement]. Ekspert kriminalist [Forensic Expert]. 2010, no. 2, pp. 28—32.
  3. Veklenko V.V., Popov I.V. Mesto ugolovnoy otvetstvennosti v sisteme yuridicheskoy otvetstvennosti, vozlagaemoy za ekologicheskie pravonarusheniya [Position of the Criminal Liability in the System of Legal Responsibility Imposed for Environmental Offenses]. Rossiyskiy sledovatel’ [Russian Investigator]. 2007, no. 24, pp. 2—9.
  4. Braun V.K., Polyakov A.N. Ekologicheskaya premiya zastroyshchika [Environmental Bonus for Builders]. Rukovoditel’ stroitel’noy organizatsii [Construction Company Executive]. 2011, no. 1, pp. 14—20.
  5. Telichenko V.I., Potapov A.D., Slesarev M.Yu., Shcherbina E.V. Ekologicheskaya bezopasnost’ stroitel’stva [Environmental Safety of Construction]. Moscow, Arkhitektura-S Publ., 2009, 311 p.
  6. Matiyashchuk S.V. Kommentariy k Federal’nomu zakonu ot 23 noyabrya 2009 g. ¹ 261-FZ «Ob energosberezhenii i o povyshenii energeticheskoy effektivnosti i o vnesenii izmeneniy v otdel’nye zakonodatel’nye akty Rossiyskoy Federatsii» (postateynyy) [Commentary on the Federal Law no. 261-FZ of November 23, 2009 “On Energy Saving and Improvement of Energy Efficiency and on Amendments to Certain Legislative Acts of the Russian Federation” (itemized)]. Moscow, Yustitsinform Publ., 2010, 208 p.
  7. Bol’sherotov A.L. Sistemy otsenki ekologicheskoy bezopasnosti stroitel’stva [Systems of Evaluation of Environmentally Safe Construction]. Moscow, ASV Publ., 2010, 216 p.
  8. Donovan F. Our Uncertain Future: Can Good Planning Create Sustainable Communities? University of Illinois, 2009, pp. 3—7.
  9. Paul F. Downtown Ecopolis: Architecture and Cities for a Changing Climate. Springer, New York, 2009, 628 p.

Download

Development of ecologically safe method for main oil and gas pipeline trenching

Vestnik MGSU 5/2014
  • Akhmedov Asvar Mikdadovich - Volgograd State University of Architecture and Civil Engineering (VSUACE) postgraduate student, Department of Civil Engineering Technologies, Volgograd State University of Architecture and Civil Engineering (VSUACE), 1 Akademicheskaya str., Volgograd, 400074, Russian Federation; +7 (8442) 96-99-58; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Abramyan Susanna Grantovna - Volgograd State University of Architecture and Civil Engineering (VSUACE) Candidate of Technical Sciences, Associate Professor, Department of Construction Technologies, Volgograd State University of Architecture and Civil Engineering (VSUACE), 1 Akademicheskaya str., Volgograd, 400074, Russian Federation; +7 (8442) 96-99-58; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Potapov Aleksandr Dmitrievich - Moscow State University of Civil Engineering (MSUCE) Doctor of Technical Sciences, Professor, Academic Secretary of the Academic Council 8 (499) 183-15-87, Moscow State University of Civil Engineering (MSUCE), 26 Jaroslavskoe shosse, Moscow, 129337, Russia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 100-107

Constructive, technical and technological reliability of major pipeline ensures ecological safety on different stages of life circle - beginning with project preparation activities up to the end of major pipeline operation. Even in the process of transition into new life circle stage, no matter if the pipeline needs major repairs or reconstruction, such technical and technological solutions should be found, which would preserve ecological stability of nature-anthropogenic system. Development of ecology protection technologies of construction, reconstruction and major repairs of main pipelines is of great importance not only for a region, but ensures ecological safety across the globe. The article presents a new way of trenching the main oil and gas pipeline, preservation and increase of ecological safety during its service. The updated technological plan is given in the paper for overhaul of the main oil and gas pipeline using the new technology of pipeline trenching. The suggested technical solution contributes to environment preservation with the help of deteriorating shells - the shells’ material decomposes into environment-friendly components: carbon dioxide, water and humus. The quantity of polluting agents in the atmosphere decreases with the decrease of construction term and quantity of technical equipment.

DOI: 10.22227/1997-0935.2014.5.100-107

References
  1. Goodland Robert, editor. Oil and Gas. Pipelines Social and Environmental Impact Assessment: State of the Art. Available at: http://coecoceiba.org/wp-content/subidas/2009/11/pub76.pdf. Date of access: 17.03.2014.
  2. Hopkins Phil. Comprehensive Structural Integrity. Vol. 1. The Structural Integrity of Oil And Gas Transmission Pipelines. Penspen Ltd., UK, May 2002. Available at: http://www.penspen.com/downloads/papers/documents/thestructuralintegrityofoilandgastransmissionpipelines.pdf. Date of access: 24.02.2014.
  3. Khaustov A.P., Redina M.M. Virtual'nyy trenazhernyy kompleks po ekologicheskoy bezopasnosti truboprovodnogo transporta uglevodorodov [Virtual Simulator Complex on Ecological Safety of Pipeline Transport of Hydrocarbons]. Truboprovodnyy transport [ Pipeline Transport]. 2011, no. 1 (23), pp. 9—11.
  4. Kozlitin P.A., Kozlitin A.M. Teoreticheskie osnovy i metody sistemnogo analiza promyshlennoy bezopasnosti ob"ektov teploenergetiki s uchetom riska: monografiya [Theoretical Basis and Methods of the System Analysis of Industrial Safety of Thermal Engineering Objects with Account for Risks: Monograph]. Saratov, Saratovskiy gosudarstvennyy tekhnicheskiy universitet Publ., 2009, 156 p.
  5. Kozlitin A.M. Teoriya i metody analiza riska slozhnykh tekhnicheskikh sistem: monografiya [Risk Theory and Analysis Methods of the Complex Technical Systems: Monograph]. Saratov, Saratovskiy gosudarstvennyy tekhnicheskiy universitet Publ., 2009, 200 p.
  6. Salah Ahmad M., Atwood Denis. ONE Route Good Enough? Using ArcGIS Network Analyst in Pipeline Alignment Optimization. ArcUser. 2010. Available at: http://www.esri.com/news/arcuser/0410/pipeline.html. Date of access: 24.02.2014.
  7. Defina John, Maitin Izak, Gray Arnold L. New Jersey Uses GIS To Collect Site Remediation Data. April-June 1998. ArcUser. Available at: http://www.esri.com/news/arcuser/arcuser4.98/newjersey.html. Date of access: 24.02.2014.
  8. Xiong Jian, Su Lanqian, Zhang Zhenyong. The Estimation of Pipeline Routes Workload Base on GIS Technology. Available at: http: //www.igu.org/html/wgc2009. Date of access: 24.02.2014.
  9. Korsey S.G., D'yakova N.B. Transportirovka i khranenie GIS-tekhnologii v truboprovodnom transporte [Transporting and Storage of GIS-technologies in Pipeline Transport]. NEFTEGAZ.RU. 2006. Available at: http://neftegaz.ru/science/view/208. Date of access: 24.03.2014.
  10. Abramyan S.G. Kontseptsiya sozdaniya GIS-tekhnologii dlya ekologicheskogo monitoringa lineynykh ob"ektnykh remontno-stroitel'nykh potokov [Concept of GIS Technologies Creapion for Ecological Monitoring of Linear Object Repair and Construction Flows]. Internet-vestnik VolgGASU. Seriya: Stroitel’naya Informatika [Internet Proceedings of Volgograd State University of Architecture and Civil Engineering. Construction Informatics Series]. 2010, no. 4 (11). Available at: http://vestnik.vgasu.ru/?source=4&articleno=396. Date of access: 12.03.2014.
  11. Potapov A.D., Abramyan S.G. Ekologicheskaya pasportizatsiya lineynykh ob"ektnykh remontno-stroitel'nykh potokov s primeneniem geograficheskikh informatsionnykh sistemnykh tekhnologiy [Ecological Passportization of Linear Object Repair and Construction Flows Using Geographical Informational System Technologies]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 1, pp. 193—197.
  12. Abramyan S.G., Akhmedov A.M. Tekhnologicheskaya skhema zameny izolyatsii pri rekonstruktsii i kapital'nom remonte magistral'nykh truboprovodov s primeneniem GIStekhnologiy [Technological Scheme of Insulation Change in the Process of Reconstruction and Major Repairs of Main Pipelines Using GIS Technologies]. Vestnik VolgGASU. Seriya: Stroitel’stvo I Architektura [Internet Proceedings of Volgograd State University of Architecture and Civil Engineering. Construction and Architecture Series]. 2013, no. 30 (49), pp. 342—345.
  13. Veliyulin I.I. Sovershenstvovanie metodov remonta gazoprovodov [Improvement of the Repair Methods for Gas Pipelines]. Moscow, Neft' i gaz Publ., 1997, 153 p.
  14. Dedeshko V.N., Salyukov V.V., Mitrokhin M.Yu. Tekhnologii pereizolyatsii i novye izolyatsionnye pokrytiya dlya zashchity MG [Insulation Change Technologies and New Insulation Coatings for Main Pipelines Protection]. Gazovaya promyshlennost' [Gas Industry]. 2005, no. 2, pp. 68—71.
  15. Shatskiy A.S., Lutsyk A.F., Larin S.S., Gabelaya R.D., Ivakin A.V. Sposob zaglubleniya truboprovodov [Means of Pipeline Ruggedization]. Patent 2370696, Rosiyskaya Federatsiya. № 2006141325/06; zayavl. 23.11.2006; opubl. 10.12.2007, Byul. № 34 [Russian Patent 2370696, no. 2006141325/06; subm. 23.11.2006; published 10.12.2007, Bulletin no. 34]. 12 p.

Download

PPLICATION OF COAL MINING WASTE IN THE PRODUCTION OF STRUCTURAL CERAMICS USING AN ECOLOGICALLY FRIENDLY AND RESOURCE SAVING TECHNOLOGY

Vestnik MGSU 3/2016
  • Gayday Maksim Fedorovich - Perm National Research Polytechnic University (PNRPU) postgraduate student, Department of Environmental Protection, Perm National Research Polytechnic University (PNRPU), 29 Komsomol’skiy pr., Perm, 614990, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Vaysman Yakov Iosifovich - Perm National Research Polytechnic University (PNRPU) Doctor of Medical Sciences, Professor, scientific supervisor, Department of Environmental Protection, Perm National Research Polytechnic University (PNRPU), 29 Komsomol’skiy pr., Perm, 614990, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Glushankova Irina Samuilovna - Perm National Research Polytechnic University (PNRPU) Doctor of Technical Sciences, Professor, scientific supervisor, Department of Environmental Protection, Perm National Research Polytechnic University (PNRPU), 29 Komsomol’skiy pr., Perm, 614990, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Semeynykh Natal’ya Sergeevna - Perm National Research Polytechnic University (PNRPU) Candidate of Technical Sciences, Associate Professor, Department of Construction Engineering and Materials Science, Perm National Research Polytechnic University (PNRPU), 29 Komsomol’skiy pr., Perm, 614990, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 93-110

The article states that the use of spoil heaps (coal mining waste) in the production of structural ceramics is expedient. It shows the reduction of negative ecological effects during the life cycle when coal mining waste is used in the initial blend for the production of structural ceramics. It shows that the development of the recommendations for the use of coal mining waste in the production of structural ceramics is an urgent issue as far as the use of coal mining waste in the production of structural ceramics can lead both to the achievement of resource saving and positive ecological effect and to the undesirable decrease of the basic physical and mechanical properties of the final products when the structure of the mix is inappropriate. In order to develop these recommendations the authors have examined the microstructure, mineral composition and physical and mechanical properties of structural ceramics produced with the use of coal mining waste, which effect the consumer properties of the target material. As a result of the research the authors have made the conclusions about the nature and degree of impact of coal mining waste quantity on the physical and mechanical properties of construction ceramics. The comparison of the data received during the measurement of the basic physical and mechanical properties of construction ceramics with the results of the research of microstructure, elemental and mineral composition of the samples has shown their correlation.

DOI: 10.22227/1997-0935.2016.3.93-110

Download

THEORETICAL PROVISIONS OF FORMATION OF METHODOLOGY FOR CREATION OF COMPLEX SYSTEM OF CONSTRUCTION WASTE TREATMENT

Vestnik MGSU 1/2017 Volume 12
  • Tskhovrebov Eduard Stanislavovich - Research Institute “Center for Environmental Industrial Policy” (Research Institute “CEIP”) Candidate of Economics, Associate Professor, Deputy Director, Research Institute “Center for Environmental Industrial Policy” (Research Institute “CEIP”), 42 Olimpiyskiy pr., Mytishchi, Moscow Region, Russian Federation, 141006.
  • Velichko Evgeniy Georgievich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Construction Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 83-93

Resource saving, ecological safety, rational use of natural resources and environmental protection are currently the priority tasks in terms of implementation of the course towards a sustainable development of the Russian state. Transformation of waste into secondary raw materials for the manufacture of environmentally friendly construction products and other products makes it possible to resolve two problems at once: preserve valuable resources and reduce the environmental load. The article presents theoretical provisions and background for methodology of forming a model of complex system of construction waste treatment in terms of modern tasks for creation of new economically efficient, resource-saving, ecologically safe and waste-free technologies and processes in the industry, as well as the requirements of regulatory acts in the sphere of environmental safety, hazardous waste management, environmental protection and rational use of natural resources. The final target indicator of scientific research in this sphere is the minimization of waste amounts dispatched to burial facilities due to creation of optimal, reasonable from the technical-and-economic point of view, chain of complexes for treatment thereof, preliminary preparation for further recycling, including sorting, dismantling, cleaning, and disposal. Comprehensive assessment and subsequent reasonable selection of optimal scientific methods of research of factors, indicators and restrictions that form the constituent elements of methodology of creation of the economic and managerial model of the complex system of waste treatment, will be continued.

DOI: 10.22227/1997-0935.2017.1.83-93

Download

ECONOMIC AND LEGAL ASPECTS OF MANAGEMENT OF WASTES AND SECONDARY MATERIAL RESOURCES (ON THE EXAMPLE OF CONSTRUCTION COMPLEX)

Vestnik MGSU 4/2018 Volume 13
  • Tskhovrebov Eduard Stanislavovich - Research Institute “Environmental Industrial Policy Center” (RI “CEIP”) Candidate of Economic Sciences, Associate Professor, Deputy Director, Research Institute “Environmental Industrial Policy Center” (RI “CEIP”), 42 Olimpiyskiy prospect, Mytishchi, Moskovskaya oblast, 141006, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 514-526

Subject: technical and economic processes and aspects of handling wastes and secondary material resources; stages of transition of anthropogenic object of environment to wastes and secondary material resources; technical possibility and economic feasibility of using secondary material resources as a secondary raw material for making products, providing energy, works, services. The problem of economy and rational use of material and power resources is relevant and significant within the limits of maintenance of a strategic course of Russia on innovative sustainable development. In this article, issues of actualization and harmonization of the regulatory and legal base in the field of management of wastes and secondary material resources are considered from the viewpoint of maintenance of minimization of waste formation and maximum use of secondary material resources in an industrial-economic cycle, provision of economic incentives for innovative activity in the given field. The actual multi-plan problem, chosen here as a topic of research, concerns regulations in management of wastes and secondary material resources in construction complex, in which economic, civil-law, ecological, social, industrial and legal relations are closely coordinated and define a subject of the present research. Production and consumption waste is a dangerous anthropogenic object of the environment but at the same time, it is a valuable secondary material resource. The non-use of wastes to be recycled as secondary raw materials for energy generation, production and, as a result, their increasing accumulation in the environment causes irreparable harm to natural objects and human health due to their dangerous properties. Research objectives: scientific and methodological substantiation of legal regulation, economic basis for formation of wastes and secondary material resources management system (on the example of construction complex and building materials industry). Materials and methods: for conducting scientific research, we used guidance documents, standards, techniques, methodological recommendations, project and regulatory documentation in the field of environmental protection and waste management, published data and materials of domestic and international research on this topic. Methods of scientific research employed here are based on the use of comparative analysis, expert methods of indicators assessment. Results: we formulated proposals to update and harmonize the conceptual apparatus in the area of management of secondary material resources in the form of amendments to the current legislation, as well as proposals with regard to economic regulation methods in the area of wastes and secondary material resources management for introduction into the plan of implementation of the “Strategy for Development of Industry for Processing, Recycling and Decontamination of Production and Consumption Wastes for the Period until 2030”, approved by the legal act of the Government of the Russian Federation. Conclusions: the formulated scientific and practical proposals on the solution to the issue of handling wastes and secondary material resources can be used in formation of regulatory and legal framework and for planning actions in management of wastes and secondary material resources within the limits of implementation of the “Strategy for Development of Industry for Processing, Recycling and Decontamination of Production and Consumption Wastes”.

DOI: 10.22227/1997-0935.2018.4.514-526

Download

ANALYSIS OF THE CONCEPT OF "GREEN" CONSTRUCTION AS A VEHICLE TO ENSURE THE ENVIRONMENTAL SAFETY OF CONSTRUCTION ACTIVITIES

Vestnik MGSU 12/2012
  • Benuzh Andrey Aleksandrovich - Moscow State University of Civil Engineering (MGSU) engineer, Department of Construction of Thermal and Nuclear Power Plants, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kolchigin Mikhail Aleksandrovich - Moscow State University of Civil Engineering (MGSU) assistant lecturer, Department of Construction of Thermal and Nuclear Power Plants, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 161 - 165

The authors demonstrate that the number of buildings in the world exceeds one billion according to the statistical data; their potential negative impact on the environment can be disastrous; moreover, the main cause of the ever-growing demand for buildings consists in the constant growth of the world population that makes the global environmental situation even more complicated.
As a main conception, the authors focus on the concept of sustainable development. They consider that the core idea of this concept is that the present-day generation should do everything in their power to preserve the natural environment and its resources for the future generations. The authors mention that back in the middle of the 20th century academician V.I. Vernadsky formulated the concept of the noosphere closely linked to the notion of sustainable development.
According to the authors, "green" construction can be considered as a vehicle for sustainable development of territories that accommodate construction sites. The authors define "green" construction as a comprehensive system of knowledge structured on the basis of design and construction standards. "Green" buildings demonstrate their high construction quality along with minimal costs and maximal comfort. Although a "green" technology is a new and not the simplest way of development, it has proven its incredible efficiency.
The major achievement of the authors consists in the classification of principles, approaches and available technologies that can be applied or are applied in the "green" construction to ensure the environmental safety of construction activities. The authors have also selected environmental, economic and social benefits of "green" construction and provided their recommendations concerning the implementation of "green" technologies in Russia.

DOI: 10.22227/1997-0935.2012.12.161 - 165

References
  1. Guarnieri Timothy J. The Real Cost of Sustainable Development. AACE International Transactions, 2008, pp. 1—7.
  2. Telichenko V.I., Potapov A.D., Slesarev M.Yu., Shcherbina E.V. Ekologicheskaya bezopasnost’ stroitel’stva [Environmental Safety of Construction]. Moscow, Arkhitektura-S Publ., 2009, 311 p.
  3. Telichenko V.I. Ot ekologicheskogo i «zelenogo» stroitel’stva — k ekologicheskoy bezopasnosti stroitel’stva [From Ecological and “Green” Construction to Environmental Safety of Construction]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering] 2011, no 2, pp. 47—51.
  4. Lockwood C. Building the Green Way. Harvard Business Publishing, 2006, pp. 129—135.
  5. Amanjeet Singh, Matt Syal, Sue C. Grady, Sinem Korkmaz. Effects of Green Buildings on Employee Health and Productivity, Am J Public Health, 2010, pp. 1665—1668.
  6. Ya. Roderick, David McEwan, Craig Wheatley, Carlos Alonso. A Comparative Study of Building Energy Performance. Building simulation, 2010, pp. 1167—1176.
  7. Alexia Nalewaik, Valerie Venters. Costs and Benefi ts of Green Building. AACE International Transactions. 2008, pp. 248—256.

Download

Economic and legal aspects of strategic planning of waste processing industry (within the framework of the development of the construction complex)

Vestnik MGSU 10/2018 Volume 13
  • Tskhovrebov Eduard S. - Research Institute “Center for Environmental Industrial Policy” Candidate of Economic Sciences, Associate Professor, Research Institute “Center for Environmental Industrial Policy”, 38 Olympic avenue, Mytishchi, 141006, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 1193-1203

Introduction. The approach to the creation of the methodological foundations of the innovative system of industrial and household waste management is presented. This will allow to implement the world principles of handling them: prevention of education, resource saving, minimization of burial volumes , energy production, including in industrial, civil, road construction, reconstruction and repair, as well as in the production of building materials. Materials and methods. The most common approach to conducting a scientific research is the analysis of regulatory legal acts, standards, methods, guidelines, project and regulatory documentation in the field of waste management, published data and materials of scientific domestic and foreign studies on this topic. The scientific study used the methods of factor, comparative analysis, expert assessment of indicators. Results. Scientifically based proposals have been formed in the field of sectoral strategic planning for the formation of a waste management system and secondary material resources, implemented during the development of the Industry Development Strategy for the Treatment, Disposal and Disposal of Production and Consumption Wastes for the Period until 2030, approved by the Government of the Russian Federation of January 25, 2018 No. 84-r. Conclusions. In of civil engineering, the proposed scientific and practical proposals for strategic sectoral planning of the waste-processing industry for the period up to 2030, the creation of an economic, organizational, managerial and legal mechanism for solving the problem of waste management and secondary material resources should be used in the formation of the regulatory framework and planning of promising measures for handling with waste secondary material resources in the framework of the development of the construction complex, construction materials.

DOI: 10.22227/1997-0935.2018.10.1193-1203

Download

Results 1 - 12 of 12