SAFETY OF BUILDING SYSTEMS. ECOLOGICAL PROBLEMS OF CONSTRUCTION PROJECTS. GEOECOLOGY

Application of solar energy in heating and cooling of residential buildings under Central Asian conditions

Vestnik MGSU 4/2014
  • Usmonov Shukhrat Zaurovich - Khujand Politechnic Institute of Tajik Technical University by academic M. Osimi (PITTU); Moscow State University of Civil Engineering (MGSU) Senior Lecturer, Khujand Politechnic Institute of Tajik Technical University by academic M. Osimi (PITTU); Moscow State University of Civil Engineering (MGSU), 226 Lenina st., Khujand, 735700, Tajikistan; applicant, Department of Architecture of Civil and Industrial Buildings; 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 142-149

Solar radiation is the main source of thermal energy for almost all the processes developing in the atmosphere, hydrosphere, and biosphere. The total duration of sunshine in Tajikistan ranges from 2100 to 3170 hours per year. Solar collectors can be mounted on the roof of a house after its renovation and modernization. One square meter of surface area in Central Asia accounts for up to 1600 kW/h of solar energy gain, whilst the average gain is 1200 kW/h. Active solar thermal systems are able to collect both low- and high-temperature heat. Active systems require the use of special engineering equipment for the collection, storage, conversion and distribution of heat, while a low-grade system is based on the principle of using a flat solar collector. The collector is connected to the storage tank for storing the heated water, gas, etc. The water temperature is in the range 50-60 °C. For summer air conditioning in hot climates, absorption-based solar installations with open evaporating solution are recommended. The UltraSolar PRO system offers an opportunity to make a home independent of traditional electricity. Combining Schneider Electric power generation and innovative energy storage technology results in an independent power supply. Traditional power supply systems can be short-lived since they store energy in lead-acid batteries which have a negligible lifetime. Lead-acid batteries operate in a constant charge-discharge mode, require specific conditions for best performance and can fail suddenly. Sudden failure of lead acid batteries, especially in winter in the northern part of Tajikistan, completely disables the heating system of a building. Instead, it is recommended to use industrial lithium-ion batteries, which have a significantly longer life and reliability compared to lead-acid type. UltraSolar PRO are ideal and provide a complete package, low noise and compact lithium-ion power supply.

DOI: 10.22227/1997-0935.2014.4.142-149

References
  1. IEA. World Energy Outlook 2004. International Energy Agency, Paris, IEA/OECD, 2004.
  2. Butti K., Perlin J. A Golden Thread: 2500 Years of Solar Architecture and Technology. London, 1980.
  3. United Nations on Climate Change. General Convention Kyoto, 1997.
  4. Gritsevich I. Protokol konferentsii po global'nomu klimatu v Kioto: novye pravila igry na sleduyushchee desyatiletie [Protocol of the Conference on Global Climate in Kyoto: New Game Rules for the Coming Decade]. Ekonomicheskaya effektivnost': Ezhekvartal'nyy byulleten' Tsentra po effektivnomu ispol'zovaniyu energii (TsENEF) [Economic Efficiency: Quarterly Bulletin of the Center on Eficcient Energy Use (TsENEF)]. Moscow, 1998, no. 18.
  5. Glikson A.L., Doroshenko A.V. Geliosistemy i teplovye nasosy v sistemakh avtonomnogo teplo- i kholodosnabzheniya [Heliosystems and Heat Pumps in the Systems of Autonomous Heat and Cooling Supply]. ABOK. 2004, no. 7, pp. 18—23.
  6. Tabunshchikov Yu.A., Akopov B.L. Energeticheskie vozmozhnosti naruzhnogo klimata [Energy Possibilities of Outside Climate]. Energosberezhenie [Energy Saving]. 2008, no. 4, pp. 50—55.
  7. Butuzov V.A. Solnechnoe teplosnabzhenie: sostoyanie del i perspektivy razvitiya [Solar Heat Subbly: Situation and Development Prospects]. Energosberezhenie [Energy Saving]. 2000, no. 4, pp. 28—30.
  8. Dik Dolmans. Vozmozhnosti zatenyayushchikh geliosistem [Possibilities of Shading Heliosystems]. Energosberezhenie [Energy Saving]. 2010, no. 7, pp. 66—69.
  9. Popel' O.S. Effektivnost' primeneniya solnechnykh vodonagrevateley v klimaticheskikh usloviyakh sredney polosy Rossii [Efficiency of Solar Water Heaters Application in in Central Russia Climate Conditions]. Energosberezhenie [Energy Saving]. 2001, no.1, pp. 30—33.
  10. Integrirovannaya otsenka sostoyaniya okruzhayushchey sredy Respubliki Tadzhikistan. Programma OON po okruzhayushchey srede (UNEP) [Integrated Assessment of the Environment State in the Tajikistan Republic. United Nations Environmental Programme]. Komitet po okhrane okruzhayushchey sredy pri pravitel'stve Respubliki Tadzhikistan [Environmental Protection Committee under the Government of Tajikistan Republic]. Available at: http://hifzitabiat.tj/files/integrirovanaya_otsenka_sostoyaniya_os_rt_2005.pdf. Date of access: 14.01.2014.
  11. Kak nachat' ekonomit' 75 % zatrat na goryachee vodosnabzhenie i 40 % zatrat na otoplenie? [How to Start Saving 75 % of Expenses on Hot-water Supply and 40 % of Expenses on Heating?]. Sun-air-water.ru. Available at: http://www.sun-air-water.ru/geliosystems. Date of access: 14.01.2014.
  12. Tanaka S., Suda R. Zhilye doma s avtonomnym teplokhladosnabzheniem [Living Houses with Independent Heating and Cooling Supply]. Moscow, Stroyizdat Publ., 1989, 185 p.
  13. Sistema otopleniya za schet energii Solntsa uzhe segodnya! [Heating System by Means of Solar Energy Today!]. EngSystem Company. Available at: http://eng-system.com/id7533.htm. Date of access: 14.01.2014.
  14. Nigmatov I.I. Osobennosti arkhitekturno-stroitel'nogo proektirovaniya zdaniy v usloviyakh Tsentral'noy Azii [Peculiarities of Architectural and Construction Design of Buildings in Central Asian Conditions]. Dushanbe,Tadzhik NIINTI Publ., 1993, 216 p.
  15. Energiya solntsa [Solar Energy]. Kompaniya Vozobnovlyaemaya energiya [Renewable Energy Company]. Available at: http://www.smarthome26.ru/sun-energy. Date of access: 14.01.14.

Download

EFFECT OF SPATIAL ORGANIZATION PATTERNS OF RESTRUCTURED RESIDENTIALHOUSING AREAS ON THE WIND ENERGY POTENTIAL OF THE ENVIRONMENT

Vestnik MGSU 2/2013
  • Poddaeva Ol’ga Igorevna - Moscow State University of Civil Engineering (MGSU) +7 (495) 739-33-02, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Dunichkin Il’ya Vladimirovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Senior Researcher, Training, Research and Production Laboratory of Wind-tunnel and Aeroacoustic Testing of Civil Engineering Structures, Associate Professor, Department of Design of Buildings and Urban Development, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Prokhorova Tat’yana Vladimirovna - Moscow State University of Civil Engineering (MGSU) assistant lecturer, Department of Theoretical Mechanics and Aerodynamics; +7 (495) 644-30-73, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 157-165

The authors consider the restructuring of Moscow residential housing areas and identify potential wind energy capacities to be based on the integration of wind turbines into urban buildings. The authors propose their original method designated for the assessment of wind patterns and developed in furtherance of Guidelines for Assessment and Management of Wind Patterns of Residential Areas, developed by Central Scientific Research and Design Institute for Urban Planning. Moreover, the authors describe several options for the restructuring of residential buildings, namely, such restructuring techniques as over-stories, link buildings, attics or building extensions added to the existing buildings.The authors provide their typological classification of planning concepts designated for the residential housing development, including the ribbon-type concept, key-type concept, low-storey concept, sporadic concept and their combinations. A comparative analysis of different wind patterns of buildings and various types of their restructuring is proposed. The authors make an attempt to prognosticate the prospects for the application of the wind power potential assessment methodology and its possible application in the course of design of multiomponent restructuring of residential buildings. The article is written within the framework of State Contract 16.552.11.7064 dated 13.07.2012.

DOI: 10.22227/1997-0935.2013.2.157-165

References
  1. Astakhov S.M. Mirovoy opyt i perspektivy ispol’zovaniya vozobnovlyaemykh istochnikov energii v sisteme elektrosnabzheniya sel’skikh poseleniy [Global Experience and Prospects for Use of Renewable Sources of Energy in the System of Power Supply of Rural Areas]. Vestnik OrelGAU [Proceedings of Orel State University of Agriculture]. 2009, no. 5, pp. 29—31.
  2. Shuyskiy V.P. Mirovye rynki vozobnovlyaemykh istochnikov energii v pervoy polovine XX veka [The World Markets of Renewable Sources of Energy in the First Half of the 20th Century]. Rossiyskiy vneshneekonomicheskiy vestnik [Russian Bulletin of Foreign Economics]. 2010, no. 1, pp. 21—29.
  3. Popel’ O.S. Tumanov V.L. Vozobnovlyaemye istochniki energii: sostoyanie i perspektivy razvitiya [Renewable Sources of Energy. Status and Prospects for Development]. Al’ternativnaya energetika i ekonomika [Alternative Power Engineering and Economics]. 2007, no. 2(46), pp. 135—148.
  4. Duffy M.J. Small Wind Turbines Mounted to Existing Structures. Atlanta, Georgia Institute of Technology, USA, 2010, 105 p.
  5. Alekseev Yu.V., Dunichkin I.V. Aerodinamicheskie osobennosti pyatietazhnoy zastroyki [Aerodynamic Peculiarities of Five-storey Buildings]. Zhilishchnoe stroitel’stvo [Residential Housing]. 2004, no. 12, pp. 5—8.
  6. Gandemer J., Guy A. Integration du phenonene vent dans la conception du milieu bati. Ministere et de l’eqipement, Paris, 1976, 130 p.
  7. Valitov Sh.M. Strategicheskie prioritety razvitiya vozobnovlyaemykh istochnikov energii [Strategic Priorities for Development of Renewable Sources of Energy]. Vestnik KGFEI [Proceedings of Kazan State Institute of Finance and Economics]. 2010, no. 3(20), pp. 52—56.
  8. Poddaeva O.I., Dunichkin I.V., Kochanov O.A. Osnovnye podkhody k issledovaniyu vozobnovlyaemykh istochnikov energii kak energeticheskogo potentsiala territoriy i zastroyki [Basic Approaches to the Research of Renewable Sources of Energy as the Energy Potential of Territories and Built-up Areas]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 10, pp. 221—228.

Download

Overview of software products for the terrain analysis in the tasks of design automation of wind-power stations

Vestnik MGSU 3/2014
  • Volkov Andrey Anatol’evich - Moscow State University of Civil Engineering (MGSU) Rector, Doctor of Technical Sciences, Professor, Chair, Department of Information Systems, Technology and Automation in Civil Engineering, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 929-52-29; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Sukneva Luiza Valer'evna - Moscow State University of Civil Engineering (MGSU) postgraduate student, assistant, Department of Information Systems, Technology and Automation in Civil Engineering, leading engineer of the analytical department, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kirschke Heiko - Bauhaus-Universitat Weimar Doctor of Engineering, Professor, Department of Computer Science in Civil Engineering, Bauhaus-Universitat Weimar, 7 Coudraystrabe, Weimar, 99423, Germany; +49 (0) 36 43; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 254-261

The lack of ground and constantly growing price for energy sources are the reason for using alternative energy. The rules of the world community for environmental protection is the motivation for using renewable energy sources. It is necessary to automate the processes of the design technology for the alternative energy structures and their operation, as well as data gathering and analisys on all the existing objects. There is also the need to automise these objects' management. The topic of this article is connected to the analysis of terrain for designing windpower stations. The regional wind maps are valuable tools for the wind farm developer for searching site, but they are not accurate enough to justify the financing of the development. For the majority of prospective wind farms, the developer must undertake a wind resource measurement and use analyzing program. This should provide a robust prediction of the expected energy production over its lifetime. The authors note that a prediction of the energy production of a wind farm is possible using such methods as the wind atlas methodology within WAsP and show the main instruments.

DOI: 10.22227/1997-0935.2014.3.254-261

References
  1. Mortensen N.G., Landber I., Troen I., Petersen E.L. Wind Atlas Analysis and Application Program (WAsP). User's Guide Risoe-1-666 (EN) (v.2). Roskilde, Denmark, Risoe National Laboratory, 1993.
  2. Volkov A. General Information Models of Intelligent Building Control Systems. Proceedings of the International Conference on Computing in Civil and Building Engineering. Nottingham, UK, Nottingham University Press, 2010, Paper 43, p. 8.
  3. Volkov A.A., Sedov A.V., Chelyshkov P.D., Sukneva L.V. Geograficheskaya informatsionnaya sistema (atlas) al'ternativnykh istochnikov energii [Atlas: Geographic Information System of Alternative Sources of Energy]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no.1, pp. 213—217.
  4. Shvetsov D. Automation in the Service of Alternative Energy — a Promising Alliance. System Integration, 2011, pp. 48—53.
  5. Ignatova E.V. Reshenie zadach na osnove informatsionnoy modeli zdaniya [Problem Solving on the Basis of Information Model of Buildings]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 9, pp. 241—246.
  6. Volkov A.A. Gomeostat stroitel'nykh ob"ektov. Chast' 3. Gomeostaticheskoe upravlenie [Homeostat of Construction Projects. Part 3. Homeostatic Management]. Stroitel'nye materialy, oborudovanie, tekhnologii XXI veka [Building Materials, Equipment, Technologies of the 21st century]. 2003, no. 2, pp. 34—35.
  7. Volkov A.A., Vaynshteyn M.S., Vagapov R.F. Raschety konstruktsiy zdaniy na progressiruyushchee obrushenie v usloviyakh chrezvychaynykh situatsiy. Obshchie osnovaniya i optimizatsiya proekta [Design Calculations for the Progressive Collapse of Buildings in Emergency Situations. Common Grounds and Project Optimization]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2008, no. 1, pp. 388—392.
  8. Skiba A.A., Ginzburg A.V. Analiz riska v investitsionno-stroitel’nom proekte [Risk Analysis for Investment Projects in the Construction Industry]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 12, pp. 276—281.
  9. Ginzburg A. Computer Modeling in Organizational and Technological Design. Proceedings of the 11th International Conference on Construction Applications of Virtual Reality 2011. Weimar, Germany, Bauhaus-Universit?t, 2011, pp. 29—30.
  10. Ginzburg A. Organizational and Technological Reliability of Construction Companies. Computing in Civil and Building Engineering. Proceedings of The International Conference. Nottingham, The University of Nottingham, 2010, pp. 275—276.

Download

ATLAS: GEOGRAPHIC INFORMATION SYSTEM OF ALTERNATIVE SOURCES OF ENERGY

Vestnik MGSU 1/2013
  • Volkov Andrey Anatol'evich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Vice Rector for Information and Information Technologies, Chair, Department of Information Systems, Technology and Automation in Civil Engineering, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Sedov Artem Vladimirovich - Moscow State University of Civil Engineering (MGSU) Junior Researcher, Research and Educational Centre for Information Systems and Intelligent Automation in Civil Engineering, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe Shosse, 129337, Moscow, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Chelyshkov Pavel Dmitrievich - Moscow State University of Civil Engineering (MGSU) Junior Researcher, Research and Educational Cen- tre for Information Systems and Intelligent Automation in Civil Engineering, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe Shosse, 129337, Moscow, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Sukneva Luiza Valer'evna - Moscow State University of Civil Engineering (MGSU) postgraduate student, assistant, Department of Information Systems, Technology and Automation in Civil Engineering, leading engineer of the analytical department, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 213-217

In this article, the authors raise the issue of the upcoming trend in the economy, namely, the use of alternative sources of energy to meet the demand for electricity and heating in the areas that suffer from the underdeveloped infrastructure. For this purpose, analysis of existing renewable energy sources, compilation of interactive maps and databases of climatic conditions (solar radiation, wind roses, and temperature zones) is needed to assure a smooth operation of renewable energy facilities and to generate a geographical link between the above databases.The objective of the proposed technology designated for the assessment of options for the positioning of varied alternative sources of energy is to identify the types and quantities of alternative energy sources and to have them positioned on site. The authors believe that wind mills and energy generating facilities that consume low-temperature heat are impossible to operate in winter seasons in the areas that have cold climates.Positioning of alternative energy sources contemplates the analysis of the available data, collection of any missing data and update of the information available to date.

DOI: 10.22227/1997-0935.2013.1.213-217

References
  1. Volkov A.A. Upravlenie zdaniyami: intellektual'nye sistemy [Management of Buildings: Intelligent Systems]. Strategiya razvitiya investitsionno-stroitel'nogo i zhilishchno-kommunal'nogo kompleksov v sovremennykh usloviyakh [Strategy for Development of Investment, Construction and Housing Utility Facilities in the Modern Context]. Edited by Yarovenko S.M. Moscow, MGAKKhiS Publ., 2009, pp. 384—394.
  2. Chelyshkov P.D., Kuzin K.S., Mikhaylichenko A.V. Metody teorii veroyatnostey pri stsenarnom modelirovanii rezhimov ekspluatatsii zdaniy i kompleksov v SAPR [Methods of the Probability Theory in the Framework of Scenario-based Modeling of Modes of Operation of Buildings and Clusters of Buildings in CAD]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 6, pp. 475—477.
  3. Untila G.G., Zaks M.B. Kremnievaya fotoenergetika: sostoyanie i osnovnye napravleniya razvitiya [Silicon-based Photovoltaic Energetics: State of the Art and Principal Lines of Development]. Teploenergetika [Thermal Engineering]. 2011, vol. 58, no. 11, pp. 932—947.
  4. Ashby W.R. An Introduction to Cybernetics, Second Impression. London, Chapman & Hall Ltd., 1957, 295 p.

Download

USING RENEWABLE ENERGY SOURCES IN DEVELOPMENT OF THE FAR EASTERN REGION OF THE RUSSIAN FEDERATION

Vestnik MGSU 2/2012
  • Monahov Boris Evgen'evich - Moscow State University of Civil Engineering (MSUCE) Candidate of Technical Sciences, Associated Professor, Director, Institute of Distance Learning and Secondary Professional Education 8 (499) 188-04-02, Moscow State University of Civil Engineering (MSUCE), 26 Jaroslavskoe shosse, Moscow, 129337, Russia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Shilova Ljubov' Andreevna - Moscow State University of Civil Engineering (MSUCE) postgraduate student 8 (495) 287-49-19, extension 1356, Moscow State University of Civil Engineering (MSUCE), 26 Jaroslavskoe shosse, Moscow, 129337, Russia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 161 - 169

Today, Russian Far East represents a transit hub connecting Europe and Russia with Southeast Asia, Japan and America. The optimal pattern of its development involves its economic growth in combination with the implementation of major investment projects to be funded by the state and private investors. Despite substantial local problems, development of eastern regions is the top-priority task for Russian and international businesses.
The paper proposes several alternative solutions to the power generation problems of Russian Far East through the application of renewable sources of power. Namely, several options considered in this paper include construction of a tidal power plant in Tugurskij bay sheltered from the heavy ice of the Sea of Ohotsk by a string of the Shantar Islands, as well as the complementary operation of wave power plants. However, the use of power generated by tidal power plants seems to be problematic due to uneven power generation for the reason of cyclical (bi-weekly) nature of tides.
This paper proposes several solutions to ensure regular power generation by Tugurskaja tidal power plant. Solution 1 contemplates the backing to be provided by Sredne-Uchurskaja and Kankunskaja hydraulic power plants in South Yakutia.
The amount of power undersupplied by Tugurskaja tidal power plant may be covered by the hydraulic power plants, and the drop-down in the performance of a tidal power plant may be compensated by the hydraulic power plants to ensure guaranteed complementary performance of a power generating vehicle composed of a network of tidal and hydraulic power plants.
Solution 2, which is more effective, involves construction of a pumped-storage power plant in a valley of the Ujkan River tributary in Khabarovsk Krai.

DOI: 10.22227/1997-0935.2012.2.161 - 169

References
  1. Strategija social'no-jekonomicheskogo razvitija Dal'nego Vostoka i Bajkal'skogo regiona na period do 2025 goda [Strategy of Social and Economic Development of the Far East and the Baikal Regon through 2025], approved by the Resolution of the RF Government of December 28, 2009 # 2094-r.
  2. Gridnev D.Z. Proektirovanie prirodno-jekologicheskogo karkasa v sostave gradostroitel'noj dokumentacii [Design of Natural Ecological Framework as Part of the Urban Planning Documentation]. Problemy regional'noj jekologii [Problems of Regional Ecology], 2009, Issue # 6, pp. 18—25.
  3. Wikipedia, the free encyclopedia [electronic resource]. Mode of access: http://ru.wikipedia.org/wiki/ÏÝÑ_ «Lya_Rans". Date of access 27.08.2011.
  4. Internet resource. http://temperatures.ru. Date of access 08.02.2012.
  5. Science photo library http://www.sciencephoto. Date of access 08.02.2012.
  6. Jiangxia Tidal Power Station. http://www.answers.com/topic/jiangxia-tidal-power-station; date of access 08.02.2012.
  7. Wenling Jiangxia experimental tidal generation plant. http://www.chinatechgadget.com/wenlingjiangxia-experimental-tidal-generation-plant.html Date of access 08.02.2012.
  8. Feasibility Report on Tugurskaja tidal power plant located in-between Cape Nosorog and Cape Bolshaja Larganda in Tugurskij Bay of the Sea of Ohotsk, Moscow, 2006.
  9. Bernshtejn L.B. Prilivnye jelektrostancii [Tidal Power Plants]. Moscow, Gidroproekt Institut [JSC Institute Hydroproject], 1994.

Download

Results 1 - 5 of 5