ECONOMICS, MANAGEMENT AND ORGANIZATION OF CONSTRUCTION PROCESSES

Theoretical bases of multidimensional modeling of sustainable development in investment and construction activities

Vestnik MGSU 6/2014
  • Sborshchikov Sergey Borisovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Economic Sciences, Professor, acting chair, Department of Technology, Organization and Management in the Construction, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Lazareva Natal'ya Valer'evna - Moscow State University of Civil Engineering (MGSU) assistant, Department of Organization Technology and Management in Construction, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Zharov Yaroslav Vladimirovich - Moscow State University of Civil Engineering (MGSU) assistant, Department of Technology, Management and Administration in the Construction, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 165-171

In the article the system processes of investment and construction activities (ISA) are considered as a set of economic space and time. The concept of economic space contains a generalized representation of the properties of technical and economic system in the initial state of its development. The space of investment and construction activities is a techno-economic system, the space, in which the movement is possible within the framework of sustainable development. A characteristic feature of economic space is its unity and indivisibility. The concept of economic space is closely related to the concept of economic time. The transition from one state of techno-economic system to another is described by the input and output variables. The task of ISA is to achieve optimal conditions for the rational use of system resources. The article identifies and discusses ISA subsystems and their interaction in the coordinate system. The space investment and construction activities encompasses a set of core and auxiliary processes, the behavior of techno-economic system, its mode of functioning in the context of sustainable development.

DOI: 10.22227/1997-0935.2014.6.165-171

References
  1. Ganta I.M. Mnogomernye diagrammy Ganta v zadachakh issledovaniya dinamiki gibkikh organizatsionnykh system [Multidimensional Gantt Chart in Research Problems of the Dynamics of Flexible Organizational Systems]. Problemy obrabotki informatsii v integral'noy avtomatizatsii proizvodstva: Sbornik nauchnykh trudov [Problems of Information Processing in the Integrated Automation of Production: Collection of Scientific Papers]. 1990, pp. 10—17.
  2. Volkov A.A., Losev Yu.G., Losev K.Yu. Informatsionnaya podderzhka zhiznennogo tsikla ob"ektov stroitel'stva [Information Support of Life Cycles of Construction Facilities]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 11, pp. 253—258.
  3. Subbotin A.S., Sborshchikov S.B. O vozmozhnosti ispol'zovaniya v stroitel'stve klasternoy modeli organizatsi [On the Possibility of Using Cluster Model of an Organization in the Construction]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 5, pp. 286—289.
  4. Construction Owner Association of Alberta. Available at: http://www.coaa.ab.ca. Date of access: 03.02.14.
  5. Ng T.S., Fan R.Y.C., Wong J.M.W. An Econometric Model for Forecasting Private Construction Investment in Hong Kong. Construction Management and Economics. 2011, vol. 29, no. 5, pp. 519—534. DOI: http://dx.doi.org/10.1080/01446193.2011.570356.
  6. Shen L., Tam V.W.Y., Tam L., Ji Y. Project Feasibility Study: the Key to Successful Implementation of Sustainable and Socially Responsible Construction M anagement Practice. Journal of Cleaner Production. 2010, vol. 18, no. 3, pp. 254—259. DOI: http://dx.doi.org/10.1016/j.jclepro.2009.10.014.
  7. Zaguskin N.N. Osnovnye napravleniya razvitiya investitsionno-stroitel'noy deyatel'nosti v Rossii [The Main Directions of Investment and Construction Activities Development in Russia]. Ekonomicheskoe vozrozhdenie Rossii [Economic Revival of Russia]. 2012, no. 4, pp. 135—141.
  8. Sborshchikov S.B. Organizatsionnye osnovy ustoychivogo razvitiya energeticheskogo stroitel'stva [Organizational Bases for Sustainable Development of Power Plant Construction]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 4, vol. 2, pp. 363—368.
  9. Zharov Ya.V. Organizatsionno-tekhnologicheskoe proektirovanie pri realizatsii investitsionno-stroitel'nykh proektov [Process Organization Design within the Framework of Construction Projects]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 5, pp. 176—184.
  10. Lukmanova I.G., Nezhnikova E.V. Perspektivnye napravleniya povysheniya kachestva v stroitel'stve [Perspective Directions of Quality Improvement in Construction]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Construction]. 2012, no. 12, pp. 81—83.
  11. Kutsigina O.A., Panaetova V.V. Tsenoobrazovanie v stroitel'stve i zhilishchnokomunal'nom khozyaystve s ispol'zovaniem metodov upravleniya zatratami [Pricing in the Construction and Housing and Communal Services using Methods of Cost Management]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2011, no. 10, pp. 38—41.
  12. Mamedov Sh.M. Sistematizatsiya priznakov konkurentosposobnosti stroitel'noy organizatsii [Classification of Competitiveness Features of a Construction Organization]. Ekonomicheskoe vozrozhdenie Rossii [Economic Revival of Russia]. 2010, no. 2, pp. 24—28.
  13. Zhang J.P., Hu Z.Z. BIM and 4D-based Integrated Solution of Analysis and Management for Conflicts and Structural Safety Problems during Construction: 1. Principles and Methodologies. Automation in Construction. 2011, vol. 20, no. 2, pp. 155—166. DOI: http://dx.doi.org/10.1016/j.autcon.2010.09.013.
  14. Lee N., Ponton R., Jeffreys A.W., Cohn R. Analysis of Industry Trends for Improving Undergraduate Curriculum in Construction Management Education. ASC Proceedings of the 47th Annual International Conference, Omaha, NE, April 2011. Available at: http://www.engineering.unl.edu/durhamschool/events/ascconference2011/. Date of access: 03.01.2014.
  15. Sacks R., Pikas E. Building Information Modeling Education for Construction Engineering and Management. I: Industry Requirements, State of the Art, and Gap Analysis. Journal of Construction Engineering and Management. 2013, vol. 139, no. 11, pp. 196—201. DOI: http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0000759.

Download

INFLUENCE OF RANDOM FACTORS ON THE TRAJECTORY OF THE SUSTAINABLE DEVELOPMENT OF INVESTMENT AND CONSTRUCTION ACTIVITY AT HIERARCHY LEVELS

Vestnik MGSU 10/2015
  • Sborshchikov Sergey Borisovich - Moscow State University of Civil Engineering (National Research University) (MGSU) octor of Economic Sciences, Candidate of Technical Sciences, Head of Department of Technology, Organization and Management in Construction, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Lazareva Natal’ya Valer’evna - Moscow State University of Civil Engineering (National Research University) (MGSU) Assistant Lecturer, Department of Technology, Organization and Management in the Construction, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 162-170

Identification of the random component in the development of investment and construction activities play an important role in forecasting future conditions, as well as in determining the optimal technical and economic parameters of the system. In this regard, the task of the hierarchy level of an investment and construction activity is to set the range of possible trajectories and the likelihood of their realization. This is one of the possibilities to justify decisions aimed at bringing investment and construction activities to the path of sustainable growth. As part of the article common technical and economic systems and their constituents are discussed: certain elements (for example: construction production), the task of which is to speed up the overall process of economic growth. The creation principles of controllable economic impacts were formed, which are the driving force of the overall steady growth, which is particularly important in planning and management as a whole, as well as in the design of development trajectories. We described the required conditions for priority development of those elements of the system, which accelerate its overall growth. The Influence System (organizer of the construction) affects the dynamics of growth of the system (contractor). The scientific findings of the article describe the entropy of the probability space of sustained growth of investment and construction activities at a timepoint. Knowing the probability space of the growth of investment and construction activities and identification of entropy can be a useful tool for practical forecasting and planning of the construction and management systems at the levels of the hierarchy.

DOI: 10.22227/1997-0935.2015.10.162-170

References
  1. Volkov A.A., Losev Yu.G., Losev K.Yu. Informatsionnaya podderzhka zhiznennogo tsikla ob”ektov stroitel’stva [Information Support of Construction Project Lifecycle]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 11, pp. 253—258. (In Russian)
  2. Construction Owner Association of Alberta. Available at: http://www.coaa.ab.ca. Date of access: 09.07.2015.
  3. Zaguskin N.N. Osnovnye napravleniya razvitiya investitsionno-stroitel’noy deyatel’nosti v Rossii [The Main Directions of the Development of Investment and Construction Activities in Russia]. Ekonomicheskoe vozrozhdenie Rossii [Economic Revival of Russia]. 2012, no. 4 (34), pp. 135—141. (In Russian)
  4. Ng S.T., Fan R.Y.C., Wong J.M.W. An Econometric Model for Forecasting Private Construction Investment in Hong Kong. Construction Management and Economics. 2011, vol. 29, no. 5, pp. 519—534. DOI: http://dx.doi.org/10.1080/01446193.2011.570356.
  5. Shen L., Tam V.W.Y., Tam L., Ji Y. Project Feasibility Study: The Key to Successful Implementation of Sustainable and Socially Responsible Construction Management Practice. Journal of Cleaner Production. 2010, vol. 18, no. 3, pp. 254—259. DOI: http://dx.doi.org/10.1016/j.jclepro.2009.10.014.
  6. Sborshchikov S.B. Organizatsionnye osnovy ustoychivogo razvitiya energeticheskogo stroitel’stva [Institutional Framework for Sustainable Development of Energy Sector Construction]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 4, vol. 2, pp. 363—368. (In Russian)
  7. Mamedov Sh.M. Sistematizatsiya priznakov konkurentosposobnosti stroitel’noy organizatsii [Classification of the Competitiveness Signs of a Construction Organization]. Ekonomicheskoe vozrozhdenie Rossii [Economic Revival of Russia]. 2010, no. 2, pp. 84—89. (In Russian)
  8. Zharov Ya.V. Organizatsionno-tekhnologicheskoe proektirovanie pri realizatsii investitsionno-stroitel’nykh proektov [Process Organization Design within the Framework of Construction Projects]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 5, pp. 176—184. (In Russian)
  9. Zhang J.P., Hu Z.Z. BIM-and 4D-Based Integrated Solution of Analysis and Management for Conflicts and Structural Safety Problems During Construction: 1. Principles and Methodologies. Automation in Construction. 2011, vol. 20, no. 2, pp. 155—166. DOI: http://dx.doi.org/10.1016/j.autcon.2010.09.013.
  10. Lee N., Ponton R., Jeffreys A.W., Cohnet R. Analysis of Industry Trends for Improving Undergraduate Curriculum in Construction Management Education. ASC Proceedings of the 47th Annual International Conference, Omaha, NE, April 2011. Available at: http://www.engineering.unl.edu/durhamschool/events/ascconference2011/. Date of access: 21.01.2015.
  11. Sacks R., Pikas E. Building Information Modeling Education for Construction Engineering and Management. I: Industry Requirements, State of the Art, and Gap Analysis. Journal of Construction Engineering and Management. 2013, vol. 139, no. 11, pp. 196—201. DOI: http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0000759.
  12. Lukmanova I.G., Nezhnikova E.V. Perspektivnye napravleniya povysheniya kachestva v stroitel’stve [Perspective Directions of Quality Improvement in the Construction]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2012, no. 12, pp. 81—83. (In Russian)
  13. Kutsygina O.A., Panaetova V.V. Tsenoobrazovanie v stroitel’stve i zhilishchno-komunal’nom khozyaystve s ispol’zovaniem metodov upravleniya zatratami [Pricing in the Construction and Housing and Communal Services Using Methods of Cost Management]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2011, no. 10, pp. 60—61. (In Russian)
  14. Sborshchikov S.B. Logistika reguliruyushchikh vozdeystviy v investitsionno-stroitel’noy sfere (teoriya, metodologiya, praktika) : dissertatsiya doktora ekonomicheskikh nauk [Logistics of Control Actions in the Field of Investment and Construction (Theory, Methodology, Practice). Dissertation of the Doctor of Economical Sciences]. Moscow, 2012, 328 p. (In Russian)
  15. Artamonova Yu.S., Khrustalev B.B., Savchenkov A.V. Formirovanie innovatsionnoy strategii razvitiya regional’nykh stroitel’nykh kompleksov [Formation of innovative Development Strategy for Regional Building Complexes]. Izvestiya Penzenskogo gosudarstvennogo pedagogicheskogo universiteta im. V.G. Belinskogo [News of Penza State Pedagogical University named after V.G. Belinsky]. 2011, no. 24, pp. 168—170. (In Russian)
  16. Sborshchikov S.B. Teoreticheskie zakonomernosti i osobennosti organizatsii vozdeystviy na investitsionno-stroitel’nuyu deyatel’nost’ [Theoretical Patterns and Characteristics of Organizing Impacts on Investment and Construction Activity]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2009, no. 2, pp. 183—187. (In Russian)
  17. Sborshchikov S.B., Lazareva N.V., Zharov Ya.V. Teoreticheskie osnovy mnogomernogo modelirovaniya ustoychivogo razvitiya investitsionno-stroitel’noy deyatel’nosti [Theoretical Bases of Multidimensional Modeling of Sustainable Development in Investment and Construction Activities]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 6, pp. 165—171. (In Russian)
  18. Aleksanin A.V. Kontseptsiya upravleniya stroitel’nykh otkhodov na baze kompleksnykh i informatsionnykh logisticheskikh tsentrov [Concept of Construction Waste Management on the Basis of Integrated Information and Logistics Centers]. Nauchnoe obozrenie [Scientific Review]. 2013, no. 7, pp. 132—136. (In Russian)
  19. Klyuev V.D., Zhuravlev P.A., Levchenko A.V. Metodicheskiy podkhod k sozdaniyu informatsionno-analiticheskikh sistem stoimostnogo monitoringa v stroitel’stve [Methodical Approach to the Creation of Information-Analytical Systems for Value Monitoring in the Construction]. Nauchnoe obozrenie [Scientific Review]. 2014, no. 1, pp. 214—218. (In Russian)
  20. Zhuravlev P.A., Klyuev V.D., Evseev V.G. Ispol’zovanie kvalimetricheskogo podkhoda dlya otsenki konkurentosposobnosti investitsionnykh stroitel’nykh proektov [Using Qualimetric Approach to Assess the Competitiveness of Investment Projects]. Nauchnoe obozrenie [Scientific Review]. 2014, no. 9, pp. 209—214. (In Russian)
  21. Ermolaev E.E. Upravlenie potrebitel’noy stoimost’yu ob”ektov stroitel’stva [Management of the Use Value of Construction Projects]. Gumanitarnye i sotsial’nye nauki [The Humanities and social sciences]. 2013, no. 3. Available at: http://www.hses-online.ru/2013/03/08_00_05/03.pdf. Date of access: 21.01.2015. (In Russian)
  22. Ermolaev E.E. Osobennosti opredeleniya fiksirovannoy stoimosti stroitel’stva v ramkakh gosudarstvennykh program [Features of Determining the Fixed Cost of Construction under Government Programs]. Vestnik universiteta (Gosudarstvennyy universitet upravleniya) [University Bulletin (State University of Management)]. 2013, no. 11, pp. 35—38. (In Russian)
  23. Popkov A.G. Autstaffing kak sposob upravleniya personalom [Outstaffing as a Way of Personnel Management]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2009, no. 1, pp. 241—244. (In Russian)
  24. Sborshchikov S.B., Popkov A.G. Novye organizatsionnye metody formirovaniya podsistemy kadrovogo obespecheniya stroitel’nogo proizvodstva v usloviyakh inzhiniringovoy skhemy upravleniya [New Organizational Methods of Forming Staffing Subsystem for Building Production in the Conditions of the Engineering Management Schemes]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 2, pp. 22—30. (In Russian)
  25. Sborshchikov S.B., Lazareva N.V., Zharov Ya.V. Matematicheskoe opisanie informatsionnogo vzaimodeystviya v investitsionno-stroitel’noy deyatel’nosti [Mathematical Description of Information Interaction in Investment and Construction Activities]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 5, pp. 170—175. (In Russian)

Download

Cost engineering as the basis for integration of the processes of planning, financing and pricing in investment and construction activity

Vestnik MGSU 11/2015
  • Sborshchikov Sergey Borisovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Economic Sciences, Professor, acting chair, Department of Technology, Organization and Management in the Construction, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Lazareva Natal’ya Valer’evna - Moscow State University of Civil Engineering (National Research University) (MGSU) Assistant Lecturer, Department of Technology, Organization and Management in the Construction, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 178-185

Current trends in the science and practice of construction indicate the ability to control the economic means of phenomena and processes occurring in the area of investment and construction activities, towards the realization of sustainable development goals. In this regard, the subsystem of planning, funding and pricing implement the problems of resource maintenance of the building complex on the hierarchy levels, the maintenance of homeostatic equilibrium of the system, as well as measure the effectiveness and profitability of production and ensuring processes. The purpose of the article is the search for capability to determine the impact, which are the change in prices for certain types of material and technical resources or reduction of unit costs. Our results are aimed at creating a model for cost control (costs, profit) of an investment and construction project and the development of theoretical foundations of value engineering. Another result of the article is an equation with which you can simulate the effects of intensity changes of individual streams, such as pay increase under certain conditions of construction, changes in the income of an enterprises and other. The features of the article include the recording of the construction hierarchy levels at each time point which depends on the concentration of a certain amount of labor, equipment and the volume of material resources, an optimal distribution between objects and areas of activity, reducing material costs and improving productivity constant. In this case, not only an objective necessity is considered, but also crucial prerequisite for sustainable development. The use of these factors leads to a decrease in the cost of construction of the object as a result of productivity growth and is reflected in the implementation of the final price of construction products.

DOI: 10.22227/1997-0935.2015.11.178-185

References
  1. Volkov A.A., Losev Yu.G., Losev K.Yu. Informatsionnaya podderzhka zhiznennogo tsikla ob”ektov stroitel’stva [Information Support of Construction Project Lifecycle]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 11, pp. 253—258. (In Russian)
  2. De la Garza J.M., Rouhana K.G. Neural Networks Versus Parameter-Based Applications in Cost Estimating. Cost Engineering. 1995, vol. 37, no. 2, pp. 14—18.
  3. Zaguskin N.N. Osnovnye napravleniya razvitiya investitsionno-stroitel’noy deyatel’nosti v Rossii [The Main Directions of Development of Investment and Construction Activities in Russia]. Ekonomicheskoe vozrozhdenie Rossii [Economic Revival of Russia]. 2012, no. 4 (34), pp. 135—141. (In Russian)
  4. Thomas Ng.S., Fan R.Y.C., Wong J.M.W. An Econometric Model for Forecasting Private Construction Investment in Hong Kong. Construction Management and Economics. 2011, vol. 29, no. 5, pp. 519—534. DOI: http://dx.doi.org/10.1080/01446193.2011.570356.
  5. Shen L., Tam V.W.Y., Tam L., Ji Y. Project Feasibility Study: the Key to Successful Implementation of Sustainable and Socially Responsible Construction Management Practice. Journal of Cleaner Production. 2010, vol. 18, no. 3, pp. 254—259. DOI: http:// dx.doi.org/10.1016/j.jclepro.2009.10.014.
  6. Sborshchikov S.B. Organizatsionnye osnovy ustoychivogo razvitiya energeticheskogo stroitel’stva [Organizational Bases for Sustainable Development of Power Plant Construction]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 4, vol. 2, pp. 363—368. (In Russian)
  7. Mamedov Sh.M. Sistematizatsiya priznakov konkurentosposobnosti stroitel’noy organizatsii [Classification of Competitiveness Features of a Construction Organization]. Ekonomicheskoe vozrozhdenie Rossii [Economic Revival of Russia]. 2010, no. 2, pp. 84—89. (In Russian)
  8. Zhang J.P., Hu Z.Z. BIM and 4D-based Integrated Solution of Analysis and Management for Conflicts and Structural Safety Problems during Construction: 1. Principles and Methodologies. Automation in Construction. 2011, vol. 20, no. 2, pp. 155—166. DOI: http://dx.doi.org/10.1016/j.autcon.2010.09.013.
  9. Lee N., Ponton R., Jeffreys A.W., Cohn R. Analysis of Industry Trends for Improving Undergraduate Curriculum in Construction Management Education. ASC Proceedings of the 47th Annual International Conference, Omaha, NE, April 2011. Available at: http://www.engineering.unl.edu/durhamschool/events/ascconference2011/. Date of access: 03.06.2015.
  10. Sacks R., Pikas E. Building Information Modeling Education for Construction Engineering and Management. I: Industry Requirements, State of the Art, and Gap Analysis. Journal of Construction Engineering and Management. 2013, vol. 139, no. 11, pp. 196—201. DOI: http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0000759.
  11. Dey P.K. Project Risk Management: A Combined Analytic Hierarchy Process and Decision Tree Approach. Cost Engineering. 2002, vol. 44, no. 3, pp. 13—27.
  12. Kutsigina O.A., Panaetova V.V. Tsenoobrazovanie v stroitel’stve i zhilishchno-komunal’nom khozyaystve s ispol’zovaniem metodov upravleniya zatratami [Pricing in the Construction and Housing and Communal Services using Methods of Cost Management]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2011, no. 10, pp. 60—61. (In Russian)
  13. Sborshchikov S.B., Lazareva N.V. Sistemotekhnicheskoe opisanie nauchno-tekhnicheskogo obespecheniya investitsionno-stroitel’noy deyatel’nosti [System Technical Description of Scientific and Technical Supply of Investment and Construction Activity]. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta [Vestnik of Tomsk State University of Architecture and Building]. 2014, no. 3 (44), pp. 210—215. (In Russian)
  14. Artamonova Yu.S., Khrustalev B.B., Savchenkov A.V. Formirovanie innovatsionnoy strategii razvitiya regional’nykh stroitel’nykh kompleksov [Formation of Innovative Strategy of Development of the Regional Building Complex]. Izvestiya Penzenskogo gosudarstvennogo pedagogicheskogo universiteta im. V.G. Belinskogo [News of Penza State Pedagogical University]. 2011, no. 24, pp. 168—170. (In Russian)
  15. Sborshchikov S.B. Teoreticheskie zakonomernosti i osobennosti organizatsii vozdeystviy na investitsionno-stroitel’nuyu deyatel’nost’ [Theoretical Regularities and Features of Impacts on Investment and Construction Activity Organization]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2009, no. 2, pp. 183—187. (In Russian)
  16. Sborshchikov S.B., Lazareva N.V., Zharov Ya.V. Teoreticheskie osnovy mnogomernogo modelirovaniya ustoychivogo razvitiya investitsionno-stroitel’noy deyatel’nosti [Theoretical Bases of Multidimensional Modeling of Sustainable Development in Investment and Construction Activities]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 6, pp. 165—171. (In Russian)
  17. Aleksanin A.V. Kontseptsiya upravleniya stroitel’nykh otkhodov na baze kompleksnykh i informatsionnykh logisticheskikh tsentrov [Concept of Construction Waste Management on the Basis of Comprehensive Information and Logistics Centers]. Nauchnoe obozrenie [Scientific Review]. 2013, no. 7, pp. 132—136. (In Russian)
  18. Klyuev V.D., Zhuravlev P.A., Levchenko A.V. Metodicheskiy podkhod k sozdaniyu informatsionno-analiticheskikh sistem stoimostnogo monitoringa v stroitel’stve [Methodical Approach to the Creation of Information-Analytical Systems for Monitoring the Value in Construction]. Nauchnoe obozrenie [Scientific Review]. 2014, no. 1, pp. 214—218. (In Russian)
  19. Klyuev V.D., Zhuravlev P.A., Evseev V.G. Ispol’zovanie kvalimetricheskogo podkhoda dlya otsenki konkurentosposobnosti investitsionnykh stroitel’nykh proektov [Using Qualimetric Approach to Assess the Competitiveness of Investment Projects]. Nauchnoe obozrenie [Scientific Review]. 2014, no. 9 (2), pp. 637—640. (In Russian)
  20. Ermolaev E.E. Upravlenie potrebitel’noy stoimost’yu ob”ektov stroitel’stva [Management of the Use Value of Construction Objects]. Gumanitarnye i sotsial’nye nauki (elektronnyy zhurnal) [The Humanities and Social Sciences (Electronic Journal)]. 2013, no. 3, pp. 5—11. (In Russian)
  21. Ermolaev E.E. Osobennosti opredeleniya fiksirovannoy stoimosti stroitel’stva v ramkakh gosudarstvennykh programm [Features of Determining the Fixed Cost of Construction under Government Programs]. Vestnik universiteta (Gosudarstvennyy universitet upravleniya) [University Bulletin (State University of Management)]. 2013, no. 11, pp. 35—38. (In Russian)
  22. Popkov A.G. Novye organizatsionnye metody formirovaniya podsistemy kadrovogo obespecheniya stroitel’nogo proizvodstva v usloviyakh inzhiniringovoy skhemy upravleniya [New Organizational Methods of Forming Subsystem of Staffing of Building Production in the Conditions of the Engineering Management Schemes]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 2, pp. 22—30. (In Russian)
  23. Sborshchikov S.B., Lazareva N.V., Zharov Ya.V. Matematicheskoe opisanie informatsionnogo vzaimodeystviya v investitsionno-stroitel’noy deyatel’nosti [Mathematical Description of Information Interaction in Investment and Construction Activities]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 5, pp. 170—175. (In Russian)

Download

Results 1 - 3 of 3