RESEARCH OF BUILDING MATERIALS

Investigation of bioresistant dry building mixes modified by carbon nanotubes

Vestnik MGSU 4/2015
  • Suraeva Ekaterina Nikolaevna - Ogarev Mordovia State University (Ogarev MSU) external degree-seeking student, Department of Construction Materials and Technologies, Ogarev Mordovia State University (Ogarev MSU), 68 Bolshevistskaya Str., Saransk 430005, Republic of Mordovia, Russian Federation; +7 (8342) 47-40-19; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Erofeev Vladimir Trofimovich - Ogarev Mordovia State University (MGU im. Ogareva) Doctor of Technical Sciences, Professor, Chair, Department of Construction Materials and Technologies, dean, Department of Architecture and Construction, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Korolev Evgeniy Valer'evich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Adviser, Russian Academy of Architectural and Building Sciences (RAACS), director, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7-499-188-04-00; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 104-114

Dry construction mixes are today a product of high technologies. Depending on the purpose and requirements to the properties it is easy to produce dry construction mixes with different compositions and operating indicators in plant conditions using the necessary modifying additives. Cement, gypsum and other mineral binders are used in the construction mixes. Different types of cement are more heavily used in dry construction mixes. Such dry mixes are believed to be more effective materials comparing to traditional cement-sandy solutions of centralized preparation. The authors present the results of the investigations on obtaining biocidal cement-sand compositions. It was established, that introduction of sodium sulfate into the composition provides obtaining the materials with funginert and fungicide properties. The strength properties of the mixes modified by carbon nanotubes and biocide additive were investigated by mathematical planning methods. The results of the investigations showed that the modification of cement stone structure by carbon nanotubes positively influences their strength and technological properties. Nanomodifying of construction composites by introducing carbon nanotubes may be effectively used at different stages of structure formation of a construction material.

DOI: 10.22227/1997-0935.2015.4.104-114

References
  1. Kalashnikov V.I., Erofeev V.T., Moroz M.N., Troyanov I.Yu., Volodin V.M., Suzdal'tsev O.V. Nanogidrosilikatnye tekhnologii v proizvodstve betonov [Nanohydrosilicate Technologies in Producing Concretes]. Stroitel'nye materialy [Construction Materials]. 2014, no. 5, pp. 88—91. (In Russian)
  2. Meshcherin V., Katts M. Dobavki i dopolnitel'nye komponenty v sovremennoy tekhnologii proizvodstva [Additives and Additional Components in the Modern Production Technology]. CPI — Mezhdunarodnoe betonnoe proizvodstvo [CPI — International Concrete Production]. 2008, no. 6, pp. 42—48. (In Russian)
  3. Borman R., Fenling E. Ultrahochfester Beton-Entwicklung und Verhalten. Leipziger Massivbauseminar. 2000, Bd. 1, S. 1083—1091.
  4. Kleingelhöfer P. Neue Betonverflissiger auf Basis Policarboxilat. Proc. 13. Jbasil Weimar. 1997, Bd. 1, S. 491—495.
  5. Dallaire E., Bonnean O., Lachemi M., Aitsin P. Mechanical Behavior of Confined Reactive Powder Concrete. American Society of Civil Engineers, Materials of the Engineering Conference. Washington DC, November 1996, vol. 1, pp. 555—563.
  6. Andreyuk E.I., Kozlova I.A., Kopte-va Zh.P. Mikrobnaya korroziya podzemnykh sooruzheniy [Microbial Corrosion of Underground Structures]. Biopovrezhdeniya i biokorroziya v stroitel'stve : materialy II Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Biodamages and Biocorrosion in the Construction : Materials of the II International Science and Technical Conference]. Saransk, 2006, pp. 79—99. (In Russian)
  7. Antonov V.B. Vliyanie biopovrezhdeniy zdaniy i sooruzheniy na zdorov'e cheloveka [Influence of Biodamages of Buildings and Structures on Human Health]. Biopovrezhdeniya i biokorroziya v stroitel'stve : materialy II Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Biodamages and Biocorrosion in the Construction : Materials of the II International Science and Technical Conference]. Saransk, 2006, pp. 238—242. (In Russian)
  8. Erofeev V.T., Kaznacheev S.V., Bogatov A.D., Spirin V.A., Svetlov D.A. Biotsidnye tsementnye kompozity s dobavkami, soderzhashchimi guanidin [Biocide Cement Composites with Additives Containing Aminoethanamidine]. Privolzhskiy nauchnyy zhurnal [Volga Region Scientific Journal]. 2010, no. 4, pp. 87—94. (In Russian)
  9. Pokrovskaya E.N., Koteneva I.V. Biopovrezhdeniya istoricheskikh pamyatnikov [Biodamages of Historical Monuments]. Biopovrezhdeniya i biokorroziya v stroitel'stve : materialy II Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Biodamages and Biocorrosion in the Construction : Materials of the II International Science and Technical Conference]. Saransk, 2004, pp. 245—248. (In Russian)
  10. Ivanov F.M. Biokorroziya neorganicheskikh stroitel'nykh materialov [Biocorrosion of Nonorganic Construction Materials]. Biopovrezhdeniya v stroitel'stve : sbornik nauchnykh trudov [Biodamages in Construction : Collection of Scientific Works]. Moscow, Stroyizdat Publ., 1984, pp. 183—188. (In Russian)
  11. Videla H.A., Herrera L.K. Microbiologically Influenced Corrosion: Looking to the Future. International Microbiology. 2005, no. 8 (3), pp. 169—180.
  12. Ramesh Babu B., Maruthamuthu S., Rajasekar A. Microbiologically Influenced Corrosion in Dairy Effluent. International Journal of Environmental Science & Technology. 2006, vol. 3, no. 2, pp. 159—166. DOI: http://dx.doi.org/10.1007/BF03325920.
  13. Yudovich M.E., Ponomarev A.N. Nanomodifikatsiya plastifikatorov. Regulirovanie ikh svoystv i prochnostnykh kharakteristik litykh betonov [Nanomodification of Plastifiers. Regulation of their Properties and the Strength Characteristics of Liquid Concretes]. StroyPROFIl' [Construction Profile]. 2007, no. 6, pp. 49—51. (In Russian)
  14. Eletskiy A.V. Uglerodnye nanotrubki [Carbon Nanotubes]. Uspekhi fizicheskikh nauk [Advances of Physical Sciences]. 1997, vol. 167, no. 9, pp. 945—972. (In Russian)
  15. Bazhenov Yu.M., Falikman V.R., Bulgakov B.I. Nanomaterialy i nanotekhnologii v sovremennoy tekhnologii betonov [Nanomaterials and Nanotechnologies in the Present-day Concrete Technology]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 12, pp. 125—133. (In Russian)
  16. Kalashnikov V.I., Erofeev V.T., Moroz M.N.,Troyanov I.Yu., Volodin V.M., Suzdal'tsev O.V. Nanogidrosilikatnye tekhnologii v proizvodstve betonov [Nanohydrosilicate Technologies in Concrete Production]. Stroitel'nye materialy [Construction Materials]. 2014, no. 5, pp. 89—91. (In Russian)
  17. Harrison B.S., Atala A. Carbon Nanotube Application for Tissue Engineering. Biomaterials. 2007, no. 28 (II), pp. 344—353. DOI: http://dx.doi.org/10.1016/j.biomaterials.2006.07.044.
  18. Zanello L.P., Zhao B., Hu H., Haddon R.C. Bone Cell Proliferation on Carbon Nanotubes. Nano Lett. 2006, no. 6 (III), pp. 562—567. DOI: http://dx.doi.org/10.1021/nl051861e.
  19. Smart S.K., Cassady A.I., Lu G.Q., Martin D.J. The Biocompatibility of Carbon Nanotubes. Carbon. 2006, vol. 44, no. 6, pp. 1034—1047. DOI: http://dx.doi.org/10.1016/j.carbon.2005.10.011.
  20. Korolev E.V. Nanotekhnologiya v stroitel'nom materialovedenii. Analiz sostoyaniya i dostizheniy. Puti razvitiya [Nanotechnology in Construction Material Science. Analysis of the State and Achievements]. Stroitel'nye materialy [Construction Materials]. 2014, no. 11, pp. 47—79. (In Russian)

Download

REGULATION OF ELECTRICAL AND RHEOLOGICAL PROPERTIES OF HETEROGENEOUS SYSTEMS ON THE BASIS OF QUARTZ SAND AND GRAPHITE BY MECHANICAL ACTIVATION OF QUARTZ SAND

Vestnik MGSU 8/2016
  • Lopanov Aleksandr Nikolaevich - Belgorod StateTechnological University named after V.G. Shukhov (BSTU named after V.G. Shoukhov) Doctor of Technical Sciences, Professor, chair, Department of Health and Safety, Belgorod StateTechnological University named after V.G. Shukhov (BSTU named after V.G. Shoukhov), 46 Kostyukova str., Belgorod, 308012, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Fanina Evgeniya Aleksandrovna - Belgorod StateTechnological University named after V.G. Shukhov (BSTU named after V.G. Shoukhov) Candidate of Technical Sciences, Associate Professor, chair, Department of Health and Safety, Belgorod StateTechnological University named after V.G. Shukhov (BSTU named after V.G. Shoukhov), 46 Kostyukova str., Belgorod, 308012, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Guzeeva Oksana Nikolaevna - Belgorod StateTechnological University named after V.G. Shukhov (BSTU named after V.G. Shoukhov) postgraduate student, Department of Health and Safety, Belgorod StateTechnological University named after V.G. Shukhov (BSTU named after V.G. Shoukhov), 46 Kostyukova str., Belgorod, 308012, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 78-87

The authors present the experimental performance of the heat of wetting depending on the number of functional groups on the surface of quartz sand. It is established that in the process of increase of specific surface of fine ground quartz filler naturally there is an increase in the total number of active centers, but their number does not change per unit of surface. The calorimetric method of analysis established that the mechanical activation increases the reactivity centers. This is the result of chemical reactions occurring on the surface, for example, under the influence of water present in the air. The authors observed hydration of surface groups and change in their reactivity. A method of regulation of rheological characteristics of pastes with plasticizing additives in the system ”cement - quartz sand - graphite“ was developed, which was aimed to reduce the ultimate shear stress up to 0.5...1.3 PA and water-composite relationship of a sand mix by 15...25 % while maintaining the viscosity of the paste that provides a uniform application of the composite in screed floors technology possessing electrical conductivity. Polycarboxylate is an efficient plasticizing additive which maintains self-levelling effect of the mixture at optimum water-cement ratio. It was determined that the threshold concentration of electrical current flow in the studied system is 0.15 (wt.), at which the aggregation of contacting graphite particles with the formation of a continuous three-dimensional mesh a conducting current is observed in the structure of the composite. The change in the concentration of the graphite allows ensuring the stability of the electrophysical parameters of the resistive materials and structures based on them. In order to increase the electrical conductivity of graphite dispersions in a model system a plasticizer was added, which reduces water-composite ratio in the formation of pastes. Chemical-based plasticizer has no significant effect on the magnitude of the threshold concentration. The increase in activation time of silica sand leads to the increased resistance of the prototypes and to the reduction of specific electrical conductivity of graphite dispersions in the system under study from 9.8 Om-1·m-1to 0.018 Om-1·m-1. The optimum grind time is 2...5 minutes. Further grinding is impractical due to the deterioration of the electrical characteristics of the samples.

DOI: 10.22227/1997-0935.2016.8.78-87

Download

Results 1 - 2 of 2