Formation of organizational and technological potential of roof constructions of residential multi-storey buildings

Vestnik MGSU 8/2015
  • Lapidus Azariy Abramovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Professor, Doctor of Technical Sciences, chair, Department of Technology and Management of the Construction, Honored Builder of the Russian Federation, Recipient of the Prize of the Russian Federation Government in the field of Science and Technology, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Makarov Aleksandr Nikolaevich - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student, Department of Technology and Management of the Construction, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 150-160

Integral organizational and technological potential of a construction object evaluates its condition and future development. Integral organizational and technological potential is a complex system. In recent years the investigation is being conducted using the methods of system analysis. Academics examined single organizational and technological potentials: construction site, project decisions, ecological load, construction companies. On one level there is a potential of production process of a construction object. One of its parts is the organizational and technological potential of roof constructions of residential multi-storey buildings. According to the general theory of systems this potential is also a system. We considered a systematic approach and found the structure of this object. It has three levels. The first level contains subsystems: installation works, project works and construction management. The second level includes evaluation criteria: scope of work, time, prime cost, safety, flexibility, resource saving and quality. The third level includes quality indexes: climatic conditions, information technologies, supply and storage of materials, quality control, qualification of the workers and engineers, readiness of work area, amount and quality of material resources, number of workers. This article is dedicated to the subsystem of installation works. In structural and functional analysis, including qualimetric expertise and correlation, we united the criteria “scope of work”, “time” and “prime cost” in one - “efficiency”. The components “qualification of workers and engineers”, “quality control” and “number of workers” were united in “work resources”; “amount and quality of material resources” in “material resources”; “supply and storage of materials” were excluded. In order to formalize this system we used the method of modeling factor system and multi-criteria optimization. Quality indexes included into a system lose their properties but get new ones. The use of weight coefficients solve this problem. For a uniform mathematical representation of quality indexes we distinguished three levels of variation for all indexes. The next step of research is weight coefficients determination and finding quality indexes combination. For this aim we need a complex qualimetric expertise.

DOI: 10.22227/1997-0935.2015.8.150-160

References
  1. Lapidus A.A. Potentsial effektivnosti organizatsionno-tekhnologicheskikh resheniy stroitel’nogo ob”ekta [Efficiency Potential of Management and Technical Solutions for a Construction Object]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 1, pp. 175—180. (In Russian)
  2. Berezhnyy A.Yu. Formirovanie informatsionnoy bazy dannykh dlya sistemy otsenki ekologicheskoy̆ effektivnosti organizatsionno-tekhnologicheskikh resheniy v protsesse stroitel'nogo proizvodstva [Formation of Informational Database for Evaluation System of Ecological Efficiency of Organizational and Technological Solutions in the Process of Construction Production]. Tekhnicheskoe regulirovanie. Stroitel’stvo, proektirovanie i izyskaniya [Technical Regulation. Construction, Design and Research]. 2012, no. 1, pp. 42—43. (In Russian)
  3. Saydaev Kh.L. Planirovanie eksperimenta pri issledovanii ekologicheskogo parametra v sisteme otsenki potentsiala general’noy podryadnoy organizatsii [Experiment Planning at Investigation of the Ecological Parameter in the Evaluation System of General Contracting Company Potential]. Tekhnicheskoe regulirovanie. Stroitel’stvo, proektirovanie i izyskaniya [Technical Regulation. Construction, Design and Research]. 2012, no. 9, pp. 48—50. (In Russian)
  4. Orlov K.O. Kompleksnyy pokazatel’ rezul’tativnosti proektov massovoy maloetazhnoy zastroyki pri ispol’zovanii razlichnykh sovremennykh tekhnologiy modul’nogo domostroeniya [Complex Performance Indicator of the Mass Low-rise Building Construction Projects Using Various Modern Technologies of Modular Housing]. Tekhnologiya i organizatsiya stroitel’nogo proizvodstva [Technology and Management of the Construction Operations]. 2013, no. 1 (2), pp. 40—42. (In Russian)
  5. Zavadskas E.K., Vilutienė T., Turskis Z., Šaparauskas J. Multi-criteria Analysis of Projects' Performance in Construction. Archives of Civil and Mechanical Engineering. 2014, vol. 14, no. 1, pp. 114—121. DOI: http://dx.doi.org/10.1016/j.acme.2013.07.006.
  6. Lapidus A.A., Govorukha P.A. Organizatsionno-tekhnologicheskiy potentsial ograzhdayushchikh konstruktsiy mnogoetazhnykh zhilykh zdaniy [Organizational and Technological Potential of Enveloping Structures of Multi-Storeyed Residential Buildings]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2015, no. 4, pp. 143—149. (In Russian)
  7. Bessonov A.K., Verstina N.G., Kulakov Yu.N. Innovatsionnyy potentsial stroitel’nykh predpriyatiy: formirovanie i ispol’zovanie v protsesse innovatsionnogo razvitiya [Innovational Potential of Construction Companies: Formation and Use in the Process of Innovational Development]. Moscow, ASV Publ., 2009, 166 p. (In Russian)
  8. Telichenko V.I. Puti razvitiya inzhenernogo potentsiala na primere stroitel’noy otrasli [Development Options of Engineering Potential in Example of the Construction Branch]. Alma Mater. Vestnik vysshey shkoly [Alma Mater. High School Herald]. 2011, no. 8, pp. 7—11. (In Russian)
  9. Jato-Espino D., Castillo-Lopez E., Rodriguez-Hernandez J., Canteras-Jordana J.C. A Review of Application of Multi-Criteria Decision Making Methods in Construction. Automation in Construction. Sept. 2014, vol. 45, pp. 151—162. DOI: http://dx.doi.org/10.1016/j.autcon.2014.05.013.
  10. Xianguo Wu, Qian Liu, Limao Zhang, Skibniewski M.J., Yanhong Wang. Prospective Safety Performance Evaluation on Construction Sites. Accident Analysis & Prevention. May 2015, vol. 78, pp. 58—72. DOI: http://dx.doi.org/10.1016/j.aap.2015.02.003.
  11. Joseph T.L. Ooi, Thao T.T. Le, Nai-Jia Lee. The Impact of Construction Quality on House Prices. Journal of Housing Economics. Dec. 2014. Vol. 26. Pp. 126—138. DOI: http://dx.doi.org/10.1016/j.jhe.2014.10.001.
  12. Liu Wei. The Material Optimized Design Methods of Sports Buildings. BioTechnology : An Indian Journal. 2014, vol. 10, no. 12, pp. 6063—6070.
  13. Chahal K.S., Emerson P. Quality Control and Quality Assurance in Building Design and Construction. Journal of the Institution of Engineers (India): Architectural Engineering Division. October 2007, vol. 88, no. OCT., 29, pp. 16—20.
  14. Brandon P., Betts M., Wamelink H. Information Technology Support to Construction Design and Production. Computers in Industry. February 1998, vol. 35, no. 1, pp. 1—12. DOI: http://dx.doi.org/10.1016/S0166-3615(97)00080-8.
  15. Froese T.M. The Impact of Emerging Information Technology on Project Management for Construction. Automation in Construction. August 2010, vol. 19, no. 5, pp. 531—538. DOI: http://dx.doi.org/10.1016/j.autcon.2009.11.004.
  16. de Wilde P., Coley D. The Implications of a Changing Climate for Buildings. Building and Environment. Sept. 2012, vol. 55, pp. 1—7. DOI: http://dx.doi.org/10.1016/j.buildenv.2012.03.014.

Download

Organizational and technological potential of enveloping structures of multi-storeyed residential buildings

Vestnik MGSU 4/2015
  • Lapidus Azariy Abramovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Professor, Doctor of Technical Sciences, chair, Department of Technology and Management of the Construction, Honored Builder of the Russian Federation, Recipient of the Prize of the Russian Federation Government in the field of Science and Technology, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Govorukha Petr Anatol’evich - Moscow State University of Civil Engineering (MGSU) Assistant Lecturer, Department of Technology and Management of the Construction, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 287-49-14 (ext. 31-25, 31-06, 31-07); This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 143-149

In the present time the necessity of quantitative evaluation of construction project efficiency is becoming increasingly current. It is connected with estimation of investment appeal of a project and with the necessity to estimate its organizational and technological level, and, as a consequence, providing the safety of a construction object. In the article the authors justify the necessity to form an instrument allowing to choose the optimal decision in the field of technologies and organization of construction works at arranging enveloping structures. The authors introduce and offer using organizational-technological potential of enveloping structures as a discrete indicator of the chosen organizational and technological solution. The future investigations will be aimed at database formation of organizational and technological potentials of completed projects. As a result the best values of the investigated potentials can be detached, that will lead to optimization of the terms and costs of the works during construction of multi-storeyed residential buildings.

DOI: 10.22227/1997-0935.2015.4.143-149

References
  1. Berezhnyy A.Yu., Saydaev Kh.L.-A. Ispol’zovanie kompleksnogo pokazatelya ekologicheskoy nagruzki pri vybore podryadnoy organizatsii [Using Complex Indicator of the Ecological Load at Choosing Contracting Company]. Tekhnicheskoe regulirovanie. Stroitel’stvo, proektirovanie i izyskaniya [Technical Regulation. Construction, Design and Research]. 2012, no. 1, pp. 26—27. (In Russian)
  2. Bessonov A.K., Verstina N.G., Kulakov Yu.N. Innovatsionnyy potentsial stroitel’nykh predpriyatiy: formirovanie i ispol’zovanie v protsesse innovatsionnogo razvitiya [Innovational Potential of Construction Companies: Formation and Use in the Process of Innovational Development]. Moscow, ASV Publ., 2009, 166 p. (In Russian)
  3. Lapidus A.A. Potentsial effektivnosti organizatsionno-tekhnologicheskikh resheniy stroitel’nogo ob”ekta [Efficiency Potential of Management and Technical Solutions for a Construction Object]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 1, pp. 175—180. (In Russian)
  4. Lapidus A.A., Berezhnyy A.Yu. Matematicheskaya model’ otsenki obobshchennogo pokazatelya ekologicheskoy nagruzki pri vozvedenii stroitel’nogo ob’’ekta [Mathematical Model Designated for the Assessment of the Integrated Environmental Load Produced by a Building Project]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering], 2012, no. 3, pp. 149—153. (In Russian)
  5. Telichenko V.I. Puti razvitiya inzhenernogo potentsiala na primere stroitel’noy otrasli [Development Options of Engineering Potential in Example of the Construction Branch]. Alma Mater. Vestnik vysshey shkoly [Alma Mater. High School Herald]. 2011, no. 8, pp. 7—11. (In Russian)
  6. Berezhnyy A.Yu. Sistemotekhnika stroitel’stva kak teoreticheskaya osnova dlya otsenki obobshchennogo pokazatelya ekologicheskoy nagruzki pri vozvedenii stroitel’nogo ob”ekta [System Techniques of Construction as a Theoretical Basis for Evaluating the Generalized Indicator of Ecological Load at Building a Construction Object]. Tekhnicheskoe regulirovanie. Stroitel’stvo, proektirovanie i izyskaniya [Technical Regulation. Construction, Design and Research]. 2011, no. 10 (11), pp. 50—52. (In Russian)
  7. Gusakov A.A., Bogomolov Yu.M., Brekhman A.I., Vaganyan G.A., Vaynshteyn M.S. Sistemotekhnika stroitel’stva: Entsiklopedicheskiy slovar’ [System Engineering of Construction: Encyclopedic Dictionary]. Editor A.A. Gusakov. 2nd edition, revised and enlarged. Moscow, ASV Publ., 2004, 320 p. (In Russian)
  8. Marugin V.M., Azgal’dov G.G. Kvalimetricheskaya ekspertiza stroitel’nykh ob”ektov [Qualimetric Inspection of Construction Objects]. Saint Petersburg, Politekhnika Publ., 2008, 527 p. (In Russian)
  9. Saydaev Kh.L. Planirovanie eksperimenta pri issledovanii ekologicheskogo parametra v sisteme otsenki potentsiala general’noy podryadnoy organizatsii [Experiment Planning at Investigation of the Ecological Parameter in the Evaluation System of General Contracting Company Potential]. Tekhnicheskoe regulirovanie. Stroitel’stvo, proektirovanie i izyskaniya [Technical Regulation. Construction, Design and Research]. 2012, no. 9, pp. 48—50. (In Russian)
  10. Berezhnyy A.Yu. Formirovanie informatsionnoy bazy dannykh dlya sistemy otsenki ekologicheskoy effektivnosti organizatsionno-tekhnologicheskikh resheniy v protsesse stroitel’nogo proizvodstva [Formation of Informational Database for Evaluation System of Ecological Efficiency of Organizational and Technological Solutions in the Process of Construction Production]. Tekhnicheskoe regulirovanie. Stroitel’stvo, proektirovanie i izyskaniya [Technical Regulation. Construction, Design and Research]. 2012, no. 1, pp. 42—43. (In Russian)

Download

INFORMATIONAL COMMUNICATION BETWEEN THE PARTICIPANTS OF A CONSTRUCTION PROJECT AS AN ADDITIONAL FACTOR IN EVALUATING THE ORGANIZATIONAL AND TECHNOLOGICAL CAPACITY

Vestnik MGSU 6/2016
  • Lapidus Azariy Abramovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Professor, Doctor of Technical Sciences, chair, Department of Technology and Management of the Construction, Honored Builder of the Russian Federation, Recipient of the Prize of the Russian Federation Government in the field of Science and Technology, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Fel’dman Aleksandr Olegovich - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student, Department of Technology and Management of the Construction, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 101-106

The current trends of dynamic implementation of new materials, equipment and organizational and technological solutions in the construction lead to increase of information volume. Although the great amount of information flows isn’t fixed in the final variant of design documentation or doesn’t reach the construction site as instructions. This problem is most pressing for major construction projects. The main reason for such a loss of information is inefficiency of data management. The article discusses the influence of the interaction between the participants of a construction project on the effectiveness of the use of information flows within the construction project. The article also indicates the justification of such influence for organizational and technological building project evaluation, which is formed on the basis of information flows. The basic components of the information flow and conditions of effective transfer to final recipient are given. The concept of the role of a participant of building project is introduced as social component of information flow transfer is.

DOI: 10.22227/1997-0935.2016.6.101-106

References
  1. Lapidus A.A., Demidov L.P. Issledovanie faktorov, vliyayushchikh na pokazatel’ potentsiala stroitel’noy ploshchadki [Investigation of the Factors Influencing the Potential Indicator of a Construction Site]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 4, pp. 160—166. (In Russian)
  2. Maksimov A.A. Struktura informatsionnykh potokov sovremennogo promyshlennogo predpriyatiya [Structure of Informational Flows of a Contemporary Industrial Enterprise]. Informatsionnye resursy Rossii [Informational Resources of Russia]. 2005, no. 5, p. 3. (In Russian)
  3. Minko I.S., Kryakov P.N. Organizatsiya informatsionnykh potokov v innovatsionnoy deyatel’nosti [Organization of Information Flows in Innovative Activity]. Nauchnyy zhurnal NIU ITMO. Seriya: Ekonomika i ekologicheskiy menedzhment [Scientific Journal NRU ITMO Series: Economics and Environmental Management]. 2014, no. 1, p. 50. (In Russian)
  4. Arnorsson H. Optimizing the Information Flow on the Construction Site. Master’s Thesis, Aalborg University, 2012, pp. 76—79.
  5. Berezhnyy A.Yu. Formirovanie informatsionnoy bazy dannykh dlya sistemy otsenki ekologicheskoy effektivnosti organizatsionno-tekhnologicheskikh resheniy v protsesse stroitel’nogo proizvodstva [Formation of Informational Database for Evaluation System of Ecological Efficiency of Organizational and Technological Solutions in the Process of Construction Production]. Tekhnicheskoe regulirovanie. Stroitel’stvo, proektirovanie i izyskaniya [Technical Regulation. Construction, Design and Research]. 2012, no. 1, pp. 42—43. (In Russian)
  6. Sergeev V.I. Korporativnaya logistika — upravlenie zapasami [Corporative Logistics —Materials Management]. Moscow, INFRA-M Publ., 2005, p. 150. (In Russian)
  7. Abouzar Golyani, Hoi-Yan Hon. Information Handling in Construction Projects. Master’s thesis. 2010:135, 51 p. Available at: http://publications.lib.chalmers.se/records/fulltext/127600.pdf.
  8. Andreas Floros Phelps. Managing Information Flow on Complex Projects. 2012, pp. 1—3. Available at: http://www.leanconstruction.org/media/docs/chapterpdf/nor-cal/2012-03-14-lci-nor-cal-meeting-phelps.pdf.
  9. Oleynik P.P., Brodskiy V.I. Osobennosti organizatsii stroitel’nogo proizvodstva pri rekonstruktsii zdaniy i sooruzheniy [Features of Construction Operations Management When Reconstructing Buildings and Structures]. Tekhnologiya i organizatsiya stroitel’nogo proizvodstva [Technology and Organization of Construction Operations]. 2013, no. 4 (5), pp. 40—45. (In Russian)
  10. Zhadanovskiy B.V. Tekhnicheskiy uroven’ proizvodstva opalubochnykh, armaturnykh i betonnykh rabot v otechestvennom stroitel’stve [Technical Level of Formworks, Reinforcement and Concrete Works in the Domestic Construction]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2005, no. 10, pp. 17—19. (In Russian)
  11. Cherednichenko N.D. Modelirovanie stroitel’nogo protsessa na etape predproektnoy podgotovki stroitel’stva [Modeling of the Construction Process on the Pre-Design Stage of the Construction]. Inzhenernyy vestnik Dona [Engineering Journal of Don]. 2012, vol. 22, no. 4-1, article 174. Available at: http://www.ivdon.ru/ru/magazine/archive/n4p1y2012/1167. (In Russian)
  12. Ivanov V.A. Perekhod ot litsenzirovaniya k samoregulirovaniyu v stroitel’noy otrasli [Transfer from Licensing to Self-Regulation in the Construction Branch]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2013, no. 3, pp. 3—5. (In Russian)
  13. Zhunin A.A. Metody sokrashcheniya trudozatrat i uluchsheniya kontrolya kachestva rabot pri vozvedenii energoeffektivnykh ograzhdayushchikh konstruktsiy [Methods of Reducing Labour Costs and Increasing the Quality Control when Constructing Energy Efficient Enveloping Structures]. Vestnik grazhdanskikh inzhenerov [Bulletin of Civil Engineers]. 2014, no. 3 (44), pp. 137—141. (In Russian)

Download

Results 1 - 3 of 3