BEDDINGS AND FOUNDATIONS, SUBTERRANEAN STRUCTURES. SOIL MECHANICS

Settlement and bearingcapacity of long pile

Vestnik MGSU 5/2015
  • Ter-Martirosyan Armen Zavenovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Soil Mechanics and Geotechnies, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Ter-Martirosyan Zaven Grigor’evich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Science, Professor of the Department of Soil Mechanics and Geotechnics, Main Researcher at the Research and Education Center “Geotechnics”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Trinh Tuan Viet - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Soil Mechanics and Geotech- nies, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Luzin Ivan Nikolaevich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Soil Mechanics and Geotechnies, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 52-61

When a long pile is interacting with the soil, the combined force applied to the pile head is distributed among the side face and the pile toe inhomogeneously. The toe gets not more than 30 % from the general force, which doesn’t let using the reserves of the bearing capacity of relatively firm soil under the fifth pile. Account for the depth of the pile toe and the dead load of the soil allows increasing the bearing capacity of the soil under the pile toe and decrease the pile settlement in general. For the quantitative estimation of these factors it is necessary to solve the task on the interaction of the rigid long pile with the surrounding soil, which includes under the pile toe, which is absolutely rigid round stamp.The article presents the formulation and analytical solution to a quantification of the settlement of a circular foundation with the due account for its depth, basing on the development of P. Mindlin’s studies as well as the interactions between a long rigid pile and surrounding soils, including under pile toe.It is proposed to compare the estimated value of stresses under the heel of pile with the initial critical load for the round foundation to check the condition that the estinated value is less than the intial critical one.

DOI: 10.22227/1997-0935.2015.5.52-61

References
  1. Nadai A. Theory of Flow and Fracture of Solids. Vol. 1. New York, McGraw-Hill, 1950, 572 p.
  2. Florin V.A. Osnovy mekhanicheskikh gruntov [Fundamentals of Mechanical Soil].
  3. Vol. 1. Moscow, Gosstroyizdat Publ., 1959, 356 p. (In Russian)
  4. Telichenko V.I., Ter-Martirosyan Z.G. Vzaimodeystvie svai bol’shoy dliny s nelineyno deformiruemym massivom grunta [Interaction between Long Piles and the Soil Body Exposed to Non-Linear Deformations]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 4, pp. 22—27. (In Russian)
  5. Ter-Martirosyan Z.G., Nguen Zang Nam. Vzaimodeystvie svay bol’shoy dliny s neodnorodnym massivom s uchetom nelineynykh i reologicheskikh svoystv gruntov [Interaction between Long Piles and a Heterogeneous Massif with Account for Non-linear and Rheological Properties of Soils]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2008, no. 2, pp. 3—14. (In Russian)
  6. Ter-Martirosyan Z.G., Trinh Tuan Viet. Vzaimodeystvie odinochnoy dlinoy svai s osnovaniem s uchetom szhimaemosti stvola svai [Interaction between a Single Long Pile and the Bedding with Account for Compressibility of the Pile Shaft]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 8, pp. 104—111. (In Russian)
  7. Mattes N.S., Poulos H.G. Settlement of Single Compressible Pile. Journal SoilMech. Foundation ASCE. 1969, vol. 95, no. 1, pp. 189—208.
  8. Ter-Martirosyan Z.G., Ter-Martirosyan A.Z., Sidorov V.V. Nachal’noe kriticheskoe davlenie pod podoshvoy kruglogo fundamenta i pod pyatoy buronabivnoy svai kruglogo secheniya [Initial Critical Stresses under the Sole of Round Foundation and under the Circular Bored Pile Toe]. Estestvennye i tekhnicheskie nauki [Journal Natural and Technical Sciences]. 2014, no. 11—12 (78), pp. 372—376. (In Russian)
  9. Bartolomey A.A., Omel’chak I.M., Yushkov B.S. Prognoz osadok svaynykh fundamentov [Forecasting the Settlement of Pile Foundation]. Moscow, Stroyizdat Publ., 1994, 384 p. (In Russian)
  10. Coyle H.M., Reese L.C. Load Transfer for Axially Loaded Piles in Clay. Journal Soil Mechanics and Foundation Division, ASCE. March1996, vol. 92, no. 2, pp. 1—26.
  11. Randolph M.F., Wroth C.P. Analysis of Deformation of Vertically Loaded Piles. Journal of the Geotechnical Engineering Division, American Society of Civil Engineers. 1978, vol. 104, no. 12, pp. 1465—1488.
  12. Van Impe W.F. Deformations of Deep Foundations. Proc. 10th Eur. Conf. SM & Found. Eng., Florence. 1991, vol. 3, pp. 1031—1062.
  13. Ter-Martirosyan Z.G. Mekhanika gruntov [Soil Mechanics]. Moscow, ASV Publ., 2009, 550 p. (In Russian)
  14. Prakash S., Sharma H.D. Pile Foundation in Engineering Practice. John Wiley & Sons, 1990, 768 p.
  15. Malyshev M.V., Nikitina N.S. Raschet osadok fundamentov pri nelineynoy zavisimosti mezhdu napryazheniyami i deformatsiyami v gruntakh [Calculation of the Base Settlements in Non-Linear Relation between Stresses and Displacements of Soil]. Osnovaniya, fundamenty i mekhanika gruntov [Bases, Foundations and Soil Mechanics]. 1982, no. 2, pp. 21—25. (In Russian)
  16. Joseph E.B. Foundation Analysis and Design. McGraw-Hill, Inc, 1997, 1240 p.
  17. Ter-Martirosyan Z.G., Strunin P.V., Trinh Tuan Viet. Szhimaemost’ materiala svai pri opredelenii osadki v svaynom fundamente [The Influence of the Compressibility of Pile Material in Determining the Settlement of Pile Foundation]. Zhilishchnoe stroitel’stvo [Housing Construction]. 2012, no. 10, pp. 13—15. (In Russian)
  18. Hansen J.B. Revised and Extended Formula for Bearing Capacity. Bulletin 28. Danish Geotechnical Institute, Copenhagen, 1970, pp. 5—11.
  19. Vijayvergiya V.N. Load-Movement Characteristics of Piles. Proc. Port 77 conference, American Society of Civil Engineers, Long Beach, CA, March 1977, pp. 269—284.
  20. Booker J., Poulos H.G. Analysis of Creep Settlement of Pile Foundation. Journal Geotechnical Engineering division. ASCE. 1976, vol. 102, no. 1, pp. 1—14.
  21. Poulos H.G., Davis E.H. Pile Foundation Analysis and Design. New York, John Wiley and Sons, 1980, 397 p.
  22. Seed H.B., Reese L.C. The Action of Soft Clay along Friction Piles. Trans., ASCE. 1957, vol. 122, no. 1, pp. 731—754.

Download

Results 1 - 1 of 1