Error
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering
  • Error loading Modules:Can't create/write to file '/var/lib/mysql/tmp/#sql_bd4_0.MYI' (Errcode: 30) SQL=SELECT id, title, module, position, content, showtitle, control, params FROM jos_modules AS m LEFT JOIN jos_modules_menu AS mm ON mm.moduleid = m.id WHERE m.published = 1 AND m.access <= 0 AND m.client_id = 0 AND ( mm.menuid = 8 OR mm.menuid = 0 ) ORDER BY position, ordering

RESEARCH OF BUILDING MATERIALS

Thermogravimetric analysis of phase transitions in cement compositions mixed by sodium silicate solution

Vestnik MGSU 1/2014
  • Fedosov Sergey Viktorovich - Ivanovo State Polytechnic University (IVGPU) Doctor of Technical Scienc- es, Professor, member, Russian Academy of Architectural and Building Sciences (RAASN), President, Ivanovo State Polytechnic University (IVGPU), office 305, 20 8-th Marta street, Ivanovo, 153037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Akulova Marina Vladimirovna - Ivanovo State Polytechnic University (IVGPU) Doctor of Technical Sciences, Professor, counselor, Russian Academy of Architectural and Building Sciences (RAASN), head, Department of Con- struction Materials Science, Special Technologies and Technological Facilities department, Ivanovo State Polytechnic University (IVGPU), office 305, 20 8-th Marta street, Ivanovo, 153037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Slizneva Tatyana Evgenyevna - Ivanovo State Polytechnic University (IVGPU) Doctor of Technical Sciences, Associate Professor, Department of Higher and Applied Mathematics, Statistics and Information Technologies, Ivanovo State Polytechnic University (IVGPU), office 305, 20 8-th Marta street, Ivanovo, 153037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Potemkina O.V. - Ivanovo State Polytechnic University (IVGPU) Doctor of Technical Sciences, doctoral student, Ivanovo State Polytechnic University (IVGPU), office 305, 20 8-th Marta street, Ivanovo, 153037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 111-118

This paper presents a study of the capability to modify cement by mechanical activation of sodium silicate water solution. Admixtures or blends of binding agents were employed for modifying concrete properties. The liquid glass is applied to protect from chemically or physically unfavorable environmental impacts, such as acidic medium and high temperature. The sodium silicate is a high-capacity setting accelerator. The increasing of the liquid glass proportion in the mix leads to the degradation of the cement paste plasticity and for this reason it is necessary to reduce the amount of liquid glass in the cement paste. The activation of dilute water solution of sodium silicate into rotary pulsating apparatus directly before tempering of the cement paste is an effective way to decrease mass fraction of liquid glass in the cement paste. The results of the combined influence of liquid glass and mechanical activation on physicochemical processes taking place in cement stone are represented in this research. Thermogravimetric analysis was used in order to study cement blends. Thermogravimetric analysis of modified cement stone assays was performed by thermo analyzer SETARAM TGA 92-24. The results of the analysis of phase transition taking place under high-temperature heating of cement stone modified by the mechanical activation of the water solution of the sodium silicate were introduced. Thermograms of cement stone assays were obtained at different hardening age. The comparison of these thermograms allows us to come to a conclusion on the formation and the retention during long time of a more dense structure of the composite matrix mixed by the mechanical activation of sodium silicate water solution. The relation between the concrete composition and its strength properties was stated. Perhaps, the capability of modified concrete to keep calcium ions in sparingly soluble hydrosilicates leads to the increase in its durability and corrosion resistance.

DOI: 10.22227/1997-0935.2014.1.111-118

References
  1. Amjad Tariq, Ernest K. Yanful. A Review of Binders Used in Cemented Paste Tailings for Underground and Surface Disposal Practices // Jour. of Environmental Management. 2013, vol. 131, no. 12, pp. 138—149.
  2. Korneev V.I., Danilov V.V. Rastvorimoe i zhidkoe steklo [The Soluble and Liquid Glass]. Sankt-Petersburg, Stroyizdat Publ., 1996, 216 p.
  3. Brykov A.S. Aqueous Jellies in the K2O-SiO2-H2O System and their Use in Technology of Fire-resistant Glass. Glass Processing Days 2007: Conference Proceedings Book. Tampere, pp. 350—351.
  4. Mikhaylenko N.Yu., Klimenko N.N., Sarkisov P.D. Stroitel'nye materialy na zhidkostekol'nom svyazuyushchem. Chast' 1. Zhidkoe steklo kak svyazuyushchee v proizvodstve stroitel'nykh materialov [Construction Materials on Liquid Glass Binder. Part 1. Liquid Glass as a Binder in Construction Materials Production]. Tekhnika i tekhnologiya silikatov [Technologies of Silicates]. 2012, vol. 19, no. 2, pp. 25—28.
  5. Shestakov S. Study the Possibility of Non-parametric Amplification Multibubble Cavitation. Applied Physics. Vol. 6, pp. 18—24.
  6. Promtov M.A. Perspektivy primeneniya kavitatsionnykh tekhnologiy dlya intensifikatsii khimiko-tekhnologicheskikh protsessov [Prospects of Using Cavitating Technologies in order to Intensify Chemical and Technological Processes]. Vestnik TGTU [Proceedings of Tver State Technical University]. 2008, vol. 14, no. 4, pp. 861—869.
  7. Vorob'ev Yu.V. Osnovy teorii mekhanoaktivatsii zhidkikh sred [Fundamentals of the Theory of Mechanical Activation of Liquid Medium]. Vestnik TGTU [Proceedings of Tver State Technical University]. 2013, vol. 19, no. 3, pp. 608—613.
  8. Akulova M.V., Strel'nikov A.N., Slizneva T.E., Padokhin V.A., Bazanov A.V. Mekhanoimpul'snaya aktivatsiya zhidkofaznykh funktsional'nykh dobavok v tsementy i betony [Mechanic and Impulsive Activation of Liquid-phase Functional Additives in Cements and Concretes]. Aktual'nye problemy sovremennogo stroitel'stva: materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Current Problems of Contemporary Construction: Materials of International Scientific and Practical Conference]. Penza, PGUAS Publ., 2011, pp. 5—8.
  9. Topor N.D., Ogorodova L.P., Mel'chakova L.V. Termicheskiy analiz mineralov i neorganicheskikh soedineniy [Thermal Analysis of Minerals and Inorganic Compounds]. Moscow, MGU Publ., 1987, 190 p.
  10. Ramachandran V.S., Paroli R.M., Beaudoin J.J., Delgado A.H. Handbook of Thermal Analysis of Construction Materials. Noyes Publications William Andrew Publishing, 2002, 692 p.
  11. Brown M.E. Introduction to Thermal Analysis. Techniques and Applications. 2-nd ed., Kluwer Academic Publishers, Dordrecht, 2001, 264 p.
  12. Fedosov S.V., Akulova M.V., Slizneva T.E., Akhmadulina Yu.S., Padokhin V.A., Bazanov A.V. Svoystva tsementnykh kompozitov na mekhanoaktivirovannom rastvore silikata natriya [Properties of Cement Composites by the Mechanoactivation of Solution of the Sodium Silicate]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 1, pp. 57—62.

Download

Efficiency of fiber reinforced concrete application in structures subjected to dynamic effects

Vestnik MGSU 3/2014
  • Morozov Valeriy Ivanovich - Saint-Petersburg State University of Architecture and Civil Engineering (SPbGASU) Doctor of Technical Sciences, Professor, head, Department of Reinforced Concrete and Masonry Structures, corresponding member of Russian Academy of Architecture and Construction Sciences, Saint-Petersburg State University of Architecture and Civil Engineering (SPbGASU), 4, 2 Krasnoarmeiskaya St., 190005, St. Petersburg, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Pukharenko Yuriy Vladimirovich - Saint-Petersburg State University of Architecture and Civil Engineering (SPbGASU) Doctor of Technical Sciences, Professor, head, Department of Building Materials Technology and Metrology, councilor of Russian Academy of Architecture and Construction Sciences, Saint-Petersburg State University of Architecture and Civil Engineering (SPbGASU), 4, 2 Krasnoarmeiskaya St., 190005, St. Petersburg, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 189-196

Fiber reinforced concretes possess high strength under dynamic loadings, which include impact loads, thanks to their high structural viscosity. This is the reason for using them in difficult operating conditions, where increasing the performance characteristics and the structure durability is of prime importance, and the issues of the cost become less significant. Applying methods of disperse reinforcement is most challenging in case of subtle high-porous materials on mineral binders, for example foamed concrete. At the same time, the experiments conducted in Russia and abroad show, that also in other cases the concrete strength resistance several times increases as a result of disperse reinforcement. This doesn't depend on average density of the concrete and type of fiber used. In the article the fibre reinforced concrete impact resistance is analysed. Recommendations are given in regard to fibre concrete application in manufacture of monolithic floor units for industrial buildings and precast piles.

DOI: 10.22227/1997-0935.2014.3.189-196

References
  1. Pukharenko Yu.V. Nauchnye i prakticheskie osnovy formirovaniya struktury i svoystv fibrobetonov: avtoreferat dissertatsii doktora tekhnicheskikh nauk [Scientific and Practical Fundamentals of Fiber Concrete Structure and Properties. Thesis Abstract of the Doctor of Technical Sciences]. Saint Petersburg, 2004, 46 p.
  2. Lobanov I.A., Pukharenko Yu.V., Gurashkin Yu.A. Udarostoykost' fibrobetonov, armirovannykh nizkomodul'nymi sinteticheskimi voloknami [Shock Resistance of Fiber Concretes, Reinforced by Low-modulus Synthetic Fibers]. Tekhnologiya i dolgovechnost' dispersno-armirovannykh betonov [Technology and Durability of Fiber Reinforced Concretes]. Leningrad, LenZNIIEP Publ., 1984, pp. 92—96.
  3. Rabinovich F.N. Kompozity na osnove dispersno-armirovannykh betonov. Voprosy teorii i proektirovaniya, tekhnologii, konstruktsii [Composites Based on Fibre Reinforced Concretes. Problems of Theory and Design, Technologies, Structures]. Moscow, ASV Publ., 2004, 560 p.
  4. Tefaruk Haktanir, Kamuran Ari, Fatih Altun, Cengiz D. Atis, Okan Karahan. Effects of Steel Fibers and Mineral Filler on the Water-tightness of Concrete Pipes. Cement and Concrete Composites. 2006, vol. 28, no. 9, pp. 811—816. DOI: 10.1016/j.cemconcomp.2006.06.002.
  5. Bhikshma V., Manipal K. Study on Mechanical Properties of Recycled Aggregate Concrete Containing Steel Fibers. Asian Journal of Civil Engineering (Building and Housing). 2012, vol. 13, no. 2, pp. 155—164.
  6. Bhikshma V., Singh J.L. Investigations on Mechanical Properties of Recycled Aggregate Concrete Containing Steel Fibers. Indian Concrete Institute Journal. 2010, no. 4—9 (10), pp. 15—19.
  7. Shah P.S., Rangan V.K. Effect of Fiber Addition on Concrete Strength. Indian Concrete Journal. 1994, vol. 5, no. 2—6, pp. 13—21.
  8. Rasheed M.H.F., Agha A.Z.S. Analysis of Fibrous Reinforced Concrete Beams. Engineering and Technical Journal. 2012, no. 30 (6), pp. 974—987.
  9. Morozov V.I., Opbul E.K. Raschet prochnosti izgibaemykh fi brozhelezobetonnykh elementov s vysokoprochnoy armaturoy bez predvaritel'nogo napryazheniya [Strength Calculation of Bending Fiber Reinforced Concrete Elements with High-strength Reinforcement without Preliminary Strain]. Doklad 62 nauchnnoy konferentsii [Report of the 62nd Scientific Conference]. Saint Petersburg, SPbGASU Publ., 2005, Part 1, pp. 210—214.
  10. RTM-17-01—2002. Rukovodyashchie tekhnicheskie materialy po proektirovaniyu i primeneniyu stalefi brobetonnykh stroitel'nykh konstruktsiy [RTM-17-01—2002. Technical Guides on Designing and Calculating Steel Fiber Reinforced Concrete Building Structures]. Moscow, 2003.
  11. Rodov G.S., Leykin B.V., Sterin V.S. Opyt primeneniya stal'nykh fibr diametrom 2 mm i fibr iz otrabotannykh trosov dlya proizvodstva zabivnykh svay: Ekspress-inform [Experience of Using Steel Fibers of 2 mm Diameter and Fibers Made of Used Wires for Producing Drive Piles: Express-Inform]. Stroitel'stvo v rayonakh Urala i Zapadniy Sibiri SSSR. Seriya: Sovershenstvovanie bazy stroitel'stva [Construction in the Regions of South Ural and Western Siberia of the USSR]. TsBNTI Publ. 1987, no. 1, pp. 31—33.

Download

HIGHLY EFFECTIVE CHEMICAL MODIFIERS FOR PRODUCTION OF CONCRETES WITH PRE-SET PROPERTIES

Vestnik MGSU 3/2012
  • Tkach Evgeniya Vladimirovna - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Construction Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Rahimov Murat Amanzholovich - Karaganda State Technical University Candidate of Technical Sciences, Professor, Head of Department of Technology of Construction Materials and Products, Karaganda State Technical University, 56 Bulvar Mira, Karaganda, 100027, Kazahstan; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Rahimova Galiya Muhamedievna - Karaganda State Technical University Candidate of Technical Sciences, Associated Professor, Head of Department of Technology of Construction Materials and Products, Karaganda State Technical University, 56 Bulvar Mira, Karaganda, 100027, Kazahstan; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Gribova Valeriya Sergeevna - Moscow State University of Civil Engineering (MSUCE) postgraduate student, Department of Construction Materials (499) 183-32-29, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 126 - 130

The paper demonstrates the application of industrial by-products and recycled materials. Waterproofing admixtures improve the structure and the properties of the cement stone. Development and preparation of highly effective waterproofing modifiers of durable effect, as well as development of the process procedure parameters, including mixing, activation, heat treatment, etc. are to be implemented. The composition of waterproofing modifiers is to be fine-tuned to synergize the behaviour of various ingredients of cement systems to assure the substantial improvement of their strength, freeze- and corrosion resistance. Multi-functional waterproofing admixtures were used to produce highly effective modified concretes. The key idea of the new method of modifying cement-based building materials is that the waterproofing admixture concentration is to exceed 10% of the weight of the binding agent within the per-unit weight of the cement stone, given that its strength does not deteriorate.
GKM-type modifier coupled with organo-mineral waterproofing admixture concentration agent GT-M may be recommended for mass use in the manufacturing of hydraulic concrete and reinforced concrete products. Overview of their practical implementation has proven that waterproofing modifier GKM-S, if coupled with waterproofing admixture concentration agent GT-M, improves the corrosion control inside the cement stone and makes it possible to manufacture durable concrete and reinforced concrete products that demonstrate pre-set physical and processing behaviour.
Comprehensive concrete modification by modifier GKM-S and waterproofing admixture concentration agent GT-M may be regarded as one of the most ambitious methods of production of highly effective waterproof concretes.

DOI: 10.22227/1997-0935.2012.3.126 - 130

References
  1. Bazhenov Ju.M. Novomu veku — novye effektivnye betony i tehnologii [New Effective Concrete Technologies for the New Age]. Stroitel’nye materialy, oborudovanie, tehnologii XXI veka [Building Materials, Equipment, Technologies of the 21st Century]. 2001, no. 1, pp. 12—14.
  2. Batrakov V. G. Modificirovannye betony [Modified Concretes]. Moscow, Stroyizdat, 1998, 231 p.
  3. Solov’ev V.I., Ergeshev R.B. Effektivnye modificirovannye betony [Effective Modified Concretes]. Almaty, KazGosINTI, 2008, pp. 280-287.

Download

Investigation of the effect of additives on the basis of pickling solutions containing iron salts on the structure and strength of fine concrete

Vestnik MGSU 1/2016
  • Lukuttsova Natal’ya Petrovna - Federal State Educational Institution of Higher Education Bryansk State Technological University of Engineering Doctor of Technical Sciences, Professor, chair, Department of Building Structures Production, Federal State Educational Institution of Higher Education Bryansk State Technological University of Engineering, prospekt Stanke Dimitrova str., Bryansk, 241037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Pashayan Ararat Aleksandrovich - Federal State Educational Institution of Higher Education Bryansk State Technological University of Engineering Doctor of Chemical Sciences, Professor, chair, Department of Chemistry, Federal State Educational Institution of Higher Education Bryansk State Technological University of Engineering, prospekt Stanke Dimitrova str., Bryansk, 241037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Khomyakova Ekaterina Nikolaevna - Federal State Educational Institution of Higher Education Bryansk State Technological University of Engineering postgraduate student, Department of Building Structures Production, Federal State Educational Institution of Higher Education Bryansk State Technological University of Engineering, prospekt Stanke Dimitrova str., Bryansk, 241037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 94-104

The modern tendencies of construction industry development are connected with the use of new high-efficient materials with the application of resource- and energy-saving technologies of their generation. The use of industrial man-made products as the components improving the characteristics of construction products is now a promising field of research. The article presents the results of the use of waste pickling solutions of steel rolling factories, containing salts of iron as nanomodified additives for the products based on cement binder. The effectiveness of the influence of the considered additives on the structure and strength of fine-grained concrete is shown. If using this additive in the amount of 0.32 % from the mass of cement for 28 days of natural hardening, the fine concrete strength is growing by 1.8 times due to additional formation of hydrosilicates, densification of structure and reduction of the total porosity of the cement system by 2 times.

DOI: 10.22227/1997-0935.2016.1.94-104

References
  1. Volodchenko A.A., Zagorodnyuk L.Kh., Prasolova E.O., Akhmed A.A., Kulik N.V., Kolomatskiy A.S. Problema ratsional’nogo prirodopol’zovaniya [Problems of Sustainable Nature Management]. Vestnik Belgorodskogo gosudarstvennogo tekhnicheskogo universiteta im. V.G. Shukhova [Bulletin of BSTU named after V.G. Shukhov]. 2014, no. 6, pp. 7—10. (In Russian)
  2. Bazhenov S.I., Alimov L.A. Vysokokachestvennye betony s ispol’zovaniem otkhodov promyshlennosti [High-quality Concretes with the Use Industrial Wastes]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 1, pp. 226—230. (In Russian)
  3. Ramesh M., Karthic K.S., Karthikeyan T., Kumaravel A. Construction Materials from Industrial Wastes — A Review of Current Practices. International Journal of Environmental Research and Development. 2014, no. 4, pp. 317—324.
  4. Pati D.J., Iki K., Homma R. Solid Waste as a Potential Construction Material for Cost-Efficient Housing in India. 3rd World Conference on Applied Sciences, Engineering & Technology. Kathmandu, 2014, pp. 240—245.
  5. Oreshkin D.V. Problemy stroitel’nogo materialovedeniya i proizvodstva stroitel’nykh materialov [Problems of Building Material Science and Building Materials Production]. Stroitel’nye materialy [Construction Materials]. 2010, no. 11, pp. 6—9. (In Russian)
  6. Alfimova N.I., Cherkasov V.S. Perspektivy ispol’zovaniya otkhodov proizvodstva keramzita v stroitel’nom materialovedenii [Prospects for the Use of Claydite Production Waste in Building Material Science]. Vestnik Belgorodskogo gosudarstvennogo tekhnicheskogo universiteta im. V.G. Shukhova [Bulletin of BSTU named after V.G. Shukhov]. 2010, no. 3, pp. 21—24. (In Russian)
  7. Buldyzhov A.A., Alimov L.A. Samouplotnyayushchiesya betony s nanomodifikatorami na osnove tekhnogennykh otkhodov [Self-Compacting Concretes with Nanomodifiers on the Basis of Industrial Waste]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2014, no. 8, pp. 86—88. (In Russian)
  8. Alfimova N.I., Sheychenko M.S., Karatsupa S.V., Yakovlev E.A., Kolomatskiy A.S., Shapovalov N.N. Features of Application of High-Mg Technogenic Raw Materials as a Component of Composite Binders. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2014, no. 5, vol. 5, pp. 1586—1591.
  9. Shapovalov N.N., Kalatozi V.V., Yurakova T.G., Yakovlev O.A. Kompozitsionnye vyazhushchie s ispol’zovaniem tekhnogenogo alyumosilikatnogo syr’ya [Composite Binders with the Use Technogenic Aluminosilicate Raw Material]. Vestnik Belgorodskogo gosudarstvennogo tekhnicheskogo universiteta im. V.G. Shukhova [Bulletin of BSTU named after V.G. Shukhov]. 2015, no. 3, pp. 44—48. (In Russian)
  10. Tukhareli V.D., Akchurin T.K., Cherednichenko T.F. Effektivnyy modifitsirovannyy beton s ispol’zovaniem otkhodov neftepererabotki dlya monolitnogo stroitel’stva [Effective Modified Concrete for Monolithic Construction with the Use of Refinery Wastes]. Vestnik Volgogradskogo arkhitekturno-stroitel’nogo universiteta. Stroitel’stvo i arkhitektura [Bulletin of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture]. 2014, no. 37 (56), pp. 112—120. (In Russian)
  11. Lesovik V.S., Strokova V.V. O razvitii nauchnogo napravleniya «nanosistemy v stroitel’nom materialovedenii» [On the Development of Scientific Direction “Nanosystems in Building Material Science”]. Stroitel’nye materialy [Construction Materials]. 2006, no. 9, pp. 93—101. (In Russian)
  12. Figovskiy O.L., Beylin D.A., Ponomarev A.N. Uspekhi primeneniya nanotekhnologiy v stroitel’nykh materialakh [Success of Applying Nanotechnologies in Construction Materials]. Nanotekhnologii v stroitel’stve: nauchnyy Internet-zhurnal [Nanotechnologies in the Construction : Scientific Online Magazine]. 2012, vol. 4, no. 3, pp. 6—21. Available at: http://nanobuild.ru/ru_RU/journal/Nanobuild_3_2012_RUS.pdf. Date of access: 15.10.2015. (In Russian)
  13. Yakovlev G.I., Polyanskikh M.S., Machyulaytis R., Kerene Ya., Malayshkene Yu., Kizinevich O., Shaybadullina A.V., Gordina A.F. Nanomodifitsirovanie keramicheskikh materialov stroitel’nogo naznacheniya [Nanomodification of Ceramic Materials for Construction Application]. Stroitel’nye materialy [Construction Materials]. 2013, no. 4, pp. 62—64. (In Russian)
  14. Lukuttsova N.P., Pykin A.A. Stability of Nanodisperse Additives Based on Metakaolin. Glass and Ceramics. 2015, vol. 71, no. 11, pp. 383—386. DOI: http://dx.doi.org/10.1007/s10717-015-9693-7.
  15. Lukuttsova N.P., Lesovik V.S., Postnikova O.A., Gornostaeva E.Y., Vasunina S.V., Suglobov A.V. Nano-Disperse Additive Based on Titanium Dioxide. International Journal of Applied Engineering Research. 2014, no. 22, vol. 9, pp. 16803—16811.
  16. Lukuttsova N., Pykin A. Application of Nanodispersed Schungite as Functional Concrete Admixture. Scientific Israel. Technological Advantages. 2010, vol. 12, no. 3, pp. 40—43.
  17. Pykin A.A. Svoystva i struktura betona s dobavkoy nanodispersnogo shungita [Properties and Structure of Concrete with Addition of Nanosized Shungite]. Tekhnologiya betonov [Concrete Technologies]. 2011, no. 3, pp. 52—54. (In Russian)
  18. Khomyakova E.N., Pashayan A.A., Lukuttsova N.P. Issledovanie svoystv tsementnogo kamnya, nanomodifitsirovannogo dobavkami na osnove soley zheleza [Research of the Properties of Cement Stone Nanomodified by the Additive Based on Iron Salts]. Mezhdunarodnyy nauchno-issledovatel’skiy zhurnal [International Research Journal]. 2015, no. 5—2 (36), pp. 111—113. (In Russian)
  19. Vinnikova O.S., Lukashov S.V. Potentsiometrirovanie otrabotannykh zhelezosoderzhashchikh travil’nykh rastvorov [Potentiometric Titration of Spent Pickling Solutions Containing Iron]. Vestnik Mezhdunarodnoy akademii nauk ekologii i bezopasnosti zhiznedeyatel’nosti [Bulletin of the International Academy of Sciences of Ecology and Life Safety]. 2010, no. 5, pp. 112—116. (In Russian)
  20. Ovcharenko G.I., Gil’miyarov D.I. Fazovyy sostav avtoklavnykh izvestkovo-zol’nykh materialov [The Phase Composition of Autoclaved Lime-Ash Materials]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 2013, no. 9 (657), pp. 28—33. (In Russian)
  21. Tarakanov O.V., Belyakova E.A. Vliyanie tonkodispersnykh aktivnykh dobavok na svoystva napolnennykh tsementnykh kompozitsiy [Influence of Fine Active Additives on the Properties of Filled Cement Compositions]. Rosnauka. Stroitel’stvo [Russian Science. Construction]. 2013, no. 4. Available at: http://www.rusnauka.com/12_KPSN_2013/Stroitelstvo/4_135868.doc.htm. Date of access: 11.11.2015. (In Russian)

Download

Results 1 - 4 of 4