-
Savin Sergey Yur’evich -
South-West State University (SWSU)
Сandidate of Technical Sciences, Associate Professor, South-West State University (SWSU), 94 50 let Oktyabrya str., Kursk, 305040, Russian Federation.
-
Ivlev Ivan Andreevich -
Orel State University named after I.S. Turgenev
Post-graduate Student, Orel State University named after I.S. Turgenev, Orel State University named after I.S. Turgenev, 95 Komsomol’skaya str., Orel, 302026, Russian Federation.
The article describes the problem of stability of elastic orthotropic rectangular plates for the case when two opposite sides are simply supported, and two other sides have boundary with either simple supports or fixed supports, which are arbitrarily combined. The plate that is simply supported all over the contour is not considered in the article since the authors described it in the earlier publication. The external load is uniformly distributed along the side and is applied to the shorter side of the plate. To solve the stability problem, the authors use an approximate analytical method - the form factor interpolation method, which is based on the functional relationship between an integral geometric parameter of the mid-plane surface (the form factor) and an integral mechanical parameter (the critical force of buckling). Subject: stability of elastic orthotropic rectangular plates for the case when two opposite sides are simply supported and two other sides have combination of simple supports and fixed supports arbitrarily combined. Materials and methods: the form factor interpolation method (FFIM) is used to solve the stability problem of elastic orthotropic rectangular plates. The solutions which were obtained by the FFIM method were compared with the results of calculations by FEM (the program SCAD Office 11.5). Results: for orthotropic rectangular plates with combined boundary conditions, we obtained analytical expressions for critical force surfaces and they depend on an integral geometric parameter - form factor and flexural stiffness ratio. To the authors’ knowledge, these expressions are obtained for the first time. The critical force surface for orthotropic rectangular plates constitutes one of the boundaries of this integral physicomechanical parameter for the entire set of orthotropic plates with arbitrary convex contour. Therefore, this surface can be used for obtaining reference solutions by the form factor interpolation method. We demonstrated how to obtain the solution of the stability problem for orthotropic rectangular plates by the form factor interpolation method using the results obtained from the aforementioned analytical expressions as the reference solutions. The solutions obtained by the form factor interpolation method are compared with the results of calculations by the finite element method and show a good accuracy. Conclusions: the analytical expressions for critical loads presented in this work can be used directly for the stability analysis of orthotropic rectangular plates loaded in one direction as well as to obtain one of the reference solutions by the form factor interpolation method for plates with arbitrary convex contour and combined boundary conditions. The proposed approach can be extended to other forms of plates, boundary conditions and loading types.
DOI: 10.22227/1997-0935.2017.12.1333-1341
-
Ignat'ev Oleg Vladimirovich -
Moscow State University of Civil Engineering (MGSU)
Doctor of Technical Sciences, Professor, Vice-Rector, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-94-82;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Karpov Vladimir Vasil'evich -
Saint-Petersburg State University of Architecture and Civil Engineering (SPSUACE)
Doctor of Technical Sciences, Professor, Department of Applied Mathematics and Computer Science, Saint-Petersburg State University of Architecture and Civil Engineering (SPSUACE), 190005, 4 Vtoraya Krasnoarmeyskaya str., Saint Petersburg, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Semenov Aleksey Aleksandrovich -
Saint-Petersburg State University of Architecture and Civil Engineering (SPSUACE)
postgraduate student, senior lecturer, Department of Applied Mathematics and Computer Science, Saint-Petersburg State University of Architecture and Civil Engineering (SPSUACE), 190005, 4 Vtoraya Krasnoarmeyskaya str., Saint Petersburg, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
In the modern construction, shipbuilding, mechanical, aircraft engineering and other fields of industry structures in the form of shells, including orthotropic shells, gained widespread currency. In order to raise their rigidity they are strengthened by reinforcing elements (ribs). In the process of shell constructions’ design the choice of rational construction parameters is very important (rational placement of ribs, their rigidity, curvature). The volume of the shell material is usually a minimalised efficiency function. At that the limit values of stress level in the shell and its stability are the restrictions. It is proposed to use variation and parametric method for choosing the angle and reinforcements by stiffening plates so that the shell construction would not lose its stability and reliability. The applied method with change of continuation parameters gives a scheme of coordinate-wise incline, which provides relative simplicity of choosing rational construction type in case of the given loads and restrictions on its stress-strain state.
DOI: 10.22227/1997-0935.2014.10.24-33
References
- Pikul' V.V. Sovremennoe sostoyanie teorii ustoychivosti obolochek [The Current State of Shell Stability Theory]. Vestnik Dal'nevostochnogo otdeleniya Rossiyskoy akademii nauk [Proceedings of Far Eastern Branch of the Russian Academy of Sciences]. 2008, no. 3, pp. 3—9. (in Russian)
- Treshchev A.A., Shereshevskiy M.B. Issledovanie NDS pryamougol'noy v plane obolochki polozhitel'noy gaussovoy krivizny iz ortotropnykh materialov s uchetom svoystv raznosoprotivlyaemosti [Investigation of Stress-Strain State of a Rectangular-plan Shell of a Positive Gaussian Curvature Made of Orthotropic Materials with Account for Multimodulus Behavior Features]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. Seriya Stroitel'stvo i arkhitektura [Proceedings of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture]. 2013, no. 31 (50), part 2, pp. 414—421. (in Russian)
- Karpov V., Semenov A. Strength and Stability of Orthotropic Shells. World Applied Sciences Journal. 2014, 30 (5), pp. 617—623. Available at: http://www.idosi.org/wasj/wasj30(5)14/14.pdf. Date of access: 12.09.2014. DOI: http://dx.doi.org/10.5829/idosi.wasj.2014.30.05.14064.
- Maksimyuk V.A., Storozhuk E.A., Chernyshenko I.S. Variational Finite-difference Methods in Linear and Nonlinear Problems of the Deformation of Metallic and Composite Shells (Review). International Applied Mechanics. 2012, vol. 48, no. 6, pp. 613—687. DOI: http://dx.doi.org/10.1007/s10778-012-0544-8.
- Qatu M.S., Sullivan R.W., Wang W. Recent Research Advances on the Dynamic Analysis of Composite Shells: 2000—2009. Composite Structures. 2010, vol. 93, no. 1, pp. 14—31. DOI: http://dx.doi.org/10.1016/j.compstruct.2010.05.014.
- Trushin S.I., Sysoeva E.V., Zhuravleva T.A. Ustoychivost' nelineyno deformiruemykh tsilindricheskikh obolochek iz kompozitsionnogo materiala pri deystvii neravnomernykh nagruzok [Stability of Nonlinear Deformable Cylindrical Shells Made of Composite Material under Action of Nonuniform Loads]. Stroitel'naya mekhanika inzhenernykh konstruktsiy i sooruzheniy [Structural Mechanics of Engineering Structures and Constructions]. 2013, no. 2, pp. 3—10. (in Russian)
- Kirakosyan R.M. Ob odnoy utochnennoy teorii gladkikh ortotropnykh obolochek peremennoy tolshchiny [On One Improved Theory of Smooth Orthotropic Shells of Variable Thickness]. Doklady natsional'noy akademii nauk Armenii [Reports of National Academy of Sciences of Armenia]. 2011, no. 2, pp. 148—156. (in Russian)
- Antuf'ev B.A. Lokal'noe deformirovanie diskretno podkreplennykh obolochek [Local Deformation of Discretely Reinforced Shells]. Moscow, MAI Publ., 2013, 182 p. (in Russian)
- Moskalenko L.P. Effektivnost' podkrepleniya pologikh obolochek rebrami peremennoy vysoty [Reinforcement Efficiency of Shallow Shells by Ribs of Variable Height]. Vestnik grazhdanskikh inzhenerov [Bulletin of Civil Engineers]. 2011, no. 3 (28), pp. 46—50. (in Russian)
- Qu Y., Wu S., Chen Y., Hua H. Vibration Analysis of Ring-Stiffened Conical—Cylindrical—Spherical Shells Based on a Modified Variational Approach. International Journal of Mechanical Sciences. April 2013, vol. 69, pp. 72—84. Available at: http://dx.doi.org/10.1016/j.ijmecsci.2013.01.026/. Date of access: 29.08.2014.
- Maksimyuk V.A., Storozhuk E.A., Chernyshenko I.S. Nonlinear Deformation of Thin Isotropic and Orthotropic Shells of Revolution with Reinforced Holes and Rigid Inclusions. International Applied Mechanics. 2013, vol. 49, no. 6, pp. 685—692. DOI: http://dx.doi.org/10.1007/s10778-013-0602-x.
- Lindgaard E., Lund E. A Unified Approach to Nonlinear Buckling Optimization of Composite Structures. Computers & Structures. 2011, vol. 89, no. 3—4, pp. 357—370. DOI: http://dx.doi.org/10.1016/j.compstruc.2010.11.008.
- Tomás A., Martí P. Shape and Size Optimisation of Concrete Shells. Engineering Structures. 2010, vol. 32, no. 6, pp. 1650—1658. DOI: http://dx.doi.org/10.1016/j.engstruct.2010.02.013.
- Amiro I.Ya., Zarutskiy V.A. Issledovaniya v oblasti ustoychivosti rebristykh obolochek [Investigations in the Field of Ribbed Shells’ Stability]. Prikladnaya mekhanika [Applied Mechanics]. 1983, vol. 19, no. 11, pp. 3—20. (in Russian)
- Ignat'ev O.V., Karpov V.V., Filatov V.N. Variatsionno-parametricheskiy metod v nelineynoy teorii obolochek stupenchato-peremennoy tolshchiny [Variational and Parametric Method in Nonlinear Theory of Shells of Step-Variable Thickness]. Volgograd, VolgGASA Publ., 2001, 210 p. (in Russian)
- Bakouline N., Ignatiev O., Karpov V. Variation Parametric Research Technique of Variable by Step Width Shallow Shells with Finite Deflections. International Journal for Computational Civil and Structural Engineering. 2000, vol. I, no. 3, pp. 1—6.
- Karpov V.V., Ignat'ev O.V. Metod posledovatel'nogo izmeneniya krivizny [Method of Consequent Change in Curvature]. Matematicheskoe modelirovanie, chislennye metody i kompleksy programm : mezhvuzovskiy tematicheskiy sbornik trudov [Mathematical Modeling, Numerical Methods and Program System]. Saint Petersburg, SPbGASU Publ., 1996, no. 2, pp. 131—135. (in Russian)
- Karpov V.V. Prochnost' i ustoychivost' podkreplennykh obolochek vrashcheniya: v 2 ch. Ch. 1: Modeli i algoritmy issledovaniya prochnosti i ustoychivosti podkreplennykh obolochek [Stability and Reliability of Reinforced Rotational Shells: in 2 Parts. Part 1: Research Models and Algorithms of Stability and Reliability of Reinforced Shells]. Moscow, Fizmatlit Publ., 2010, 288 p. (in Russian)
- Karpov V.V., Semenov A.A. Matematicheskaya model' deformirovaniya podkreplennykh ortotropnykh obolochek vrashcheniya [Mathematical Deformation Model of Reinforced Orthotropic Rotational Shells]. Inzhenerno-stroitel'nyy zhurnal [Magazine of Civil Engineering]. 2013, no. 5, pp. 100—106. (in Russian)
- Petrov V.V. Metod posledovatel'nykh nagruzheniy v nelineynoy teorii plastinok I obolochek [Method of Consequent Loadings in Nonlinear Theory of Plates and Shells]. Saratov, SGU im. N.G. Chernyshevskogo Publ., 1975, 119 p. (in Russian)