Methodical approaches to waste co-recycling technologies development

Vestnik MGSU 5/2014
  • Pugin Konstantin Georgievich - Perm National Research Polytechnic University (PNRPU) Candidate of Technical Sciences, Associate Professor, Department of Automobiles and Production Machines, Perm National Research Polytechnic University (PNRPU), 29 Komsomol’skiy prospekt, Perm, 614990, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Vaysman Yakov Iosifovich - Perm National Research Polytechnic University (PNRPU) Doctor of Medical Sciences, Professor, Scientific Supervisor, Department of Environmental Protection, Perm National Research Polytechnic University (PNRPU), 29 Komsomol’skiy prospekt, Perm, 614990, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 78-90

Currently, the waste industry is being perceived more as a raw material for producing the desired products. That is the result of waste production expanding and the improvement of processing of materials technology. Most part of waste recycling falls on construction technology. If waste recycling is used in building constructions there may be possible negative effects of heavy metals emission. Large waste volumes make it possible to develop heterogeneous waste recycling effects such as mutual neutralization of synergy and the improvement of consumer qualities of the obtained materials. Basing on summarized results of waste heterogeneous co-recycling research it was possible to find ways of construction materials potential preparation. Methodological principles are based on best available technologies principles. The presented paper sets targets, methods and tools to achieve them. The qualitative and quantitative characteristics may vary depending on the tasks to be implemented. It was stated that the effective counteraction of wastes reduced the emission of heavy metals on the account of mutual neutralization and the shift of water-soluble composition to fix form. The obtained material in relation to its consumer properties is as good as its raw material analogy.

DOI: 10.22227/1997-0935.2014.5.78-90

  1. Leont'ev L.I. Net dal'neyshemu nakopleniyu tekhnogennykh otkhodov metallurgii [Say No to Further Accumulation of Ferrous Waste]. Ekologiya i promyshlennost' Rossii [Ecology and Production Sector of Russia]. 2013, no. 1, pp. 2—3.
  2. Reich J., Pasel C., Herbell J., Luckas M. Effects of Limestone Addition and Sintering on Heavy Metal Leaching from Hazardous Waste Incineration Slag. Waste Management. 2002, vol. 22, no. 3, pp. 315—326. DOI: 10.1016/S0956-053X(01)00020-4.
  3. Motz H., Geiseler J. Products of Steel Slags an Opportunity to Save Natural Resources. Waste Management. 2001, no. 21 (3), pp. 285—293.
  4. Lind B.B., Fallman A.M., Larsson L.B. Environmental Impact of Ferrochrome Slag in Road Construction. Waste Management. 2001, no. 21 (3), pp. 255—264.
  5. Downey J.P., Twidwell L.G. Ferrihydrite and Aluminum-Modified Ferrihydrite Enhanced High Density Sludge Treatment for Removing Dissolved Metals from Acid Rock Drainage. Global Symposium on Recycling, Waste Treatment and Clean Technology. REWAS 2008, TMS, 10, vol. 3, pp. 1289—1299.
  6. Young C., Downey J. Splash Technology: Applying the Design-for-Recyclability Concept to Spent Potlining Management. Global Symposium on Recycling, Waste Treatment, and Clean Technology. REWAS 2008, TMS, 10, vol. 1, pp. 254—260.
  7. Pugin K.G., Vaysman Ya.I. Metodicheskie podkhody k razrabotke i identifikatsii nailuchshikh dostupnykh tekhnologiy na primere ispol'zovaniya shlakov chernoy metallurgii [Methodological Approaches to Development and Identification of the Best Available Technologies through the Example Use of Ferrous Slags]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 10, pp. 183—195.
  8. Reuter M., Xiao Y., Boin U. Recycling and Environmental Issues of Metallurgical Slags and Salt Fluxes. VII International Conference on Molten Slags Fluxes and Salts. The South African Institute of Mining and Metallurgy, 2004, pp. 349—356.
  9. Pugin K.G., Vaysman Y.I. Methodological Approaches to Development of Ecologi-cally Safe Usage Technologies of Ferrous Industry Solid Waste Resource Potential. World Applied Sciences Journal, 2013, vol. 22, Special Issue on Techniques and Technologies, pp. 28—33.
  10. Woolley G.R., Goumans J.J.J.M., Ainright P.J. (Eds.). Waste Materials in Construction. WASCON 2000. Proceedings of the International Conference on the Science and Engineering of Recycling for Environmental Protection. Pergamon Press, vol. 1, Harrogate, England, pp. 438—448.
  11. Qasrawi H., Shalabi F., Asi I. Use of Low CaO Unprocessed Steel Slag in Concrete as Fine Aggregate. Construction and Building Materials. 2009, no. 23, pp. 1118—1125. DOI: 10.1016/j.conbuildmat.2008.06.003.
  12. Alizadeh R., Chini M., Ghods P., Hoseini M., Montazer Sh., Shekarchi M. Utilization of Electric Arc Furnace Slag as Aggregates in Concrete — Environmental Issue. 6-th CANMET/ACI International Conference on Recent Advances in Concrete Technology. Bucharest, Romania, June 2003, pp. 451—464.
  13. Shekarchi M., Soltani M., Alizadeh R., Chini M., Ghods P., Hoseini M., Montazer Sh. Study of the Mechanical Properties of Heavyweight Preplaced Aggregate Concrete Using Electric Arc Furnace Slag as Aggregate. International Conference on Concrete Engineering and Technology. Malaysia, 2004.
  14. Gerald M. Weinberg. Quality Software Management: Systems Thinking. Dorset House, 1992, 336 p.
  15. Freedman Daniel P., Weinberg Gerald M. Handbook of Walkthroughs, Inspections, and Technical Reviews. Evaluating Programs, Projects, and Products. Dorset House, 1990, 464 p.
  16. Kazman R., Bass L. Making Architecture Reviews Work in the Real World. IEEE Software. January/February 2002, pp. 76—73. DOI: 10.1109/52.976943.
  17. Cheremnykh S.V., Semenov I.O., Ruchkin V.S. Strukturnyy analiz sistem: IDEFtekhnologii [Structural Analysis of Systems: IDEF-Technologies]. Moscow, Finansy i statistika Publ., 2001, 208 p.
  18. Pugin K.G., Kalinina E.V., Khalitov A.R. Resursosberegayushchie tekhnologii stroitel'stva asfal'tobetonnykh dorozhnykh pokrytiy s ispol'zovaniem otkhodov proizvodstva [Resource Saving Technologies of Construction of Bituminous Concrete Pavements Using Industrial Waste]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Urbanistika [Proceedings of Perm National Research Polytechnic University. Urban Studies]. 2011, no. 2, pp. 60—69.
  19. Shi C., Qian J. High Performance Cementing Materials from Industrial Slag — a Review. Resource Conserve Recycle. 2000, vol. 29, pp. 195—207. DOI:
  20. Wu S., Xu Y., Chen Q.Y. Utilization of Steel Slag as Aggregates for Stone Mastic Asphalt (SMA) Mixtures. Building and Environment, 2007, vol. 42, pp. 2580—2585.
  21. Pugin K.G., Vaysman Ya.I., Volkov G.N., Mal'tsev A.V. Otsenka negativnogo vozdeystviya na okruzhayushchuyu sredu stroitel'nykh materialov soderzhashchikh otkhody chernoy metallurgii [Estimation of the Negative Impact on the Environment of Construction Materials Containing Iron Industry Waste]. Sovremennye problemy nauki i obrazovaniya [Contemporary Problems of Science and Education]. 2012, no. 2 (40). Available at:
  22. Pugin K.G. Voprosy ekologii ispol'zovaniya tverdykh otkhodov chernoy metallurgii v stroitel'nykh materialakh [The problems of the Ecology of Using Ferrous Hard Waste in Construction Materials]. Stroitel'nye materialy [Construction Materials]. 2012, no. 8, pp. 54—56.


Results 1 - 1 of 1