-
Lesovik Valeriy Stanislavovich -
Belgorod State Technological University named after V.G. Shukhov (BSTU named after V.G. Shukhov)
Doctor of Technical Sciences, Professor, Head of Department of Construction Materials Science, Products and Constructions, Belgorod State Technological University named after V.G. Shukhov (BSTU named after V.G. Shukhov), 46 Kostyukova str., Belgorod, 308012, Russian Federation.
To determine the science development level, we should depart from a specific stage of the society development. The construction material science has achieved a certain success in creation of composites which ensure safety of buildings and structures including a protection thereof against certain natural and technogenic impacts. A new stage in the construction material science provides for a technology of creation of composites that would be comfortable for a particular individual. For implementation of the above, it is necessary to generate a new paradigm for design and synthesis of construction materials using a new raw materials base. Optimization of the “man-material-habitat” system is a complex task requiring transdisciplinary approaches for its solution. In terms of this line, the concept of technogenic metasomatosis in the construction material science was formed, as well as the law of affinity of structures, a possibility of creation of composites that respond to operational loads by "self-healing" of defects were formed. Examples of implementation of the stated concept are given. It is concluded that the monodisciplinary and interdisciplinary approaches in the construction material science contributed to the development of a wide range of building composites used in construction of strong and durable structures. Selection of materials for construction must primarily be determined by a wide array of personality characteristics, geography of construction, ecology, etc.
DOI: 10.22227/1997-0935.2017.1.9-16
-
Bedov Anatoliy Ivanovich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Candidate of Technical Sciences, Professor, Department of Reinforced Concrete and Stone Structures, Moscow State University of Civil Engineering (National Research University) (MGSU), 26, Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
-
Gaysin Askar Miniyarovich -
Ufa State Petroleum Technological University (USPTU)
Candidate of Technical Sciences, Associate Professor, Department of Building Structures, Ufa State Petroleum Technological University (USPTU), Office 225, 195, Mendeleeva St., Ufa, 450062, Russian Federation.
-
Gabitov Azat Ismagilovich -
Ufa State Petroleum Technological University (USPTU)
Doctor of Technical Sciences, Professor, Department of Building Structures, Ufa State Petroleum Technological University (USPTU), Office 225, 195, Mendeleeva St., Ufa, 450062, Russian Federation.
-
Kuznetsov Dmitriy Valeryevich -
Ufa State Petroleum Technological University (USPTU)
Candidate of Technical Sciences, Associate Professor, Department of Building Structures, Ufa State Petroleum Technological University (USPTU), Office 225, 195, Mendeleeva St., Ufa, 450062, Russian Federation.
-
Salov Aleksandr Sergeevich -
Ufa State Petroleum Technological University (USPTU)
Candidate of Technical Sciences, Associate Professor, Department of Highways and Technology of Construction Operations, Ufa State Petroleum Technological University (USPTU), Office 225, 195, Mendeleeva St., Ufa, 450062, Russian Federation.
-
Abdulatipova Elena Midkhatovna -
Ufa State Petroleum Technological University (USPTU)
Doctor of Technical Sciences, Associate Professor, Professor of Department of Technological Machines and Equipment, Ufa State Petroleum Technological University (USPTU), Office 225, 195, Mendeleeva St., Ufa, 450062, Russian Federation.
Energy efficiency in construction is the main direction of energy saving in which the basic measure is to reduce heat losses through walling. In this regard, a particularly promising measure is an application of high-hollow multislot ceramic for external walls due to its predictable properties and reliability in operation. Range of high-hollow ceramic products currently manufactured in the Republic of Bashkortostan is considered in the article. Simulation and calculation of strength characteristics of high-hollow ceramic stones in the SCAD program system were performed, fracture model geometric parameters were obtained. Results of mechanical tests of high-hollow ceramic products are shown. The simulation and calculations performed in the SCAD program system with obtaining of geometric parameters of the fracture model made it possible to compare the convergence of calculation results with actual test results. Based on the results of the performed research it is concluded that the fracture model in the SCAD program system has practically coincided with the fracture pattern obtained in the process of experimental study of strength of high-hollow ceramic stones.
DOI: 10.22227/1997-0935.2017.1.17-25
-
Velichko Evgeniy Georgievich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Doctor of Technical Sciences, Professor, Department of Construction Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
-
Tskhovrebov Eduard Stanislavovich -
Research Institute “Center for Environmental Industrial Policy” (Research Institute “CEIP”)
Candidate of Economics, Associate Professor, Deputy Director, Research Institute “Center for Environmental Industrial Policy” (Research Institute “CEIP”), 42 Olimpiyskiy pr., Mytishchi, Moscow Region, Russian Federation, 141006.
Environmentally safe construction products are materials and products of construction purpose made of renewable natural resources and natural environment components with minimum spend of natural resources and energy, and the process of handling thereof (extraction of raw materials for production of the aforesaid materials and products, manufacture, transportation, use in engineering structures, processing, recycling, burial in natural environment) does not adversely affect neither humans nor environment. The article considers the basic historical stages of use of environmentally friendly construction materials in industrial and civil construction, starting from antiquity and ending with modern age. Review materials on the use of safe natural products such as wood, stone, thatch, peat, clay and other types of environmentally friendly materials in construction are presented. Properties of natural materials that ensure environmental safety of buildings, structures and premises, sanitary and hygienic requirements, coziness and comfort thereof for humans are analyzed. It is concluded that at present time the construction of high quality, comfortable, ecologically safe housing at affordable prices which is based on environmentally friendly technologies, resource and energy saving, construction materials safe for human health, should become one of the main priorities of economic and environmental policy of Russia.
DOI: 10.22227/1997-0935.2017.1.26-35