-
Orlov Vladimir Aleksandrovich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Doctor of Technical Sciences, Professor, Head of the Department of Water Supply and Waste Water Treatment, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Orlov Evgeniy Vladimirovich -
Moscow State University of Civil Engineering (MGSU)
Doctor of Technical Sciences, Аssociate Professor, Department of Water Supply; +7 (499)183-36-29, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Zverev Pavel Vladimirovich -
Moscow State University of Civil Engineering (MGSU)
bachelor student, water supply and discharge major, Department of Water Supply; +7 (499)183-36-29., Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The article represents an overview and analysis of trenchless technologies used to provide for the leak resistance and strength of dilapidated sections of pipelines made of ceramics, cast iron, asbestos cement and other materials. Sectional pipeline repair technologies, considered by the authors, include those for the repair of loose joints of straight sections of pipelines and loose joints in the points of connection to secondary pipelines. Technologies analyzed by the authors also include those applied for the restoration of pipe shell cracks. Organic resins and bandages are to be used as repair materials.Besides, the authors provide detailed descriptions of the composition and properties of pumping resins injected into pipe cracks to restore the structural strength of pipelines and to assure their further reliable operation.Moreover, the authors assess the basic strengths of the bandage technology, including its low cost, low time consumption, and suitability to various types of pipeline damages (depressurization of joints, cracks, leaks, etc.). Besides, this method does not require any excavations, trenches, hoists or other machines.In particular, sections of underground pipelines, having diameters of 150 – 180 mm, may be repaired by specialized repair robots. Robots may be equipped with special-purpose devices, including cutter heads, bandage application heads, and color motion cameras. Besides, sectional repair of pipelines, having the diameter of up to 600 mm, may be performed using robots produced by Hachler Umwelttechnik, which are particularly efficient if the repair work is needed to be performed in the points of pipeline branching.The choice of specific pipeline repair methods and substantiation of their application are mainly driven by (1) the post-cleaning condition of a pipeline, (2) the findings of the telediagnostics, (3) options for arrangement and use of specialized machinery on location, and (4) feasibility of the pipeline operation in the course of repair works and procedures.
DOI: 10.22227/1997-0935.2013.7.86-95
References
- Infrastruktur fur die Zukunft. Weimar. Rohrbau-Kongress. 2008. p. 214.
- Khramenkov S.V. Strategiya modernizatsii vodoprovodnoy seti [Water Supply Network Modernization Strategy]. Moscow, Stroyizdat Publ., 2005, 398 p.
- Zwierzchowska A. Technologie beswykopowej budowy sieci gazowych, wodociagowych I kanalizacyjnych. Politechnika swietokrzyska. 2006. p. 180.
- Otstavnov A.A., Kchantaev I.S., Orlov E.V. K viboru trub dlia bestrancheynogo ustroystva truboprovodov vodosnabgenyia I vodootvedeniya [To the choice of pipes for trenchless device pipelines of water supply and sewerage]. Plasticheskie massy [Plastic masses]. 2007. Pp. 40—43.
- Khramenkov S.V., Primin O.G. Problemy i puti snizheniya poter’ vody [Problems and Method of Water Loss Reduction]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Engineering]. 2012, no. 11, pp. 10—14.
- Orlov V.A., Michaylin A.V., Orlov Å.V. Technologii bestranscheynoy renovazii truboprovodov [Technologies of trenchless renovation of pipelines]. Ìoscow, ASV Publ., 2011. 143 p.
- Burger J. Verfahren zur Sanierung bzw. Renovierung von Abwasserleitungen und kanalen [Patent of Germany N 19833885.6; Declared 28.07.1998; Published 03.02.2000].
- Janflen A. Importance of Lateral Structural Repair of Lateral Lines Simultaneously with Main Line CIPP Rehabilitation. NO-DIG 2012, Sao Paulo, Brasil.
- Pinguet J.-F., Meynardie G. Reseaux d’assainissement: du diagnostic a la rehabilitation. Eau, industry, nuisances. 2006., no. 295, pp. 39—43.
- Kuliczkowski A., Kuliczkowska E., Zwierzchowska A. Technologie beswykopowe w inzeynierii srodowiska. Wydawnictwo Seidel-Przywecki Sp. 2010, 735 p.
-
Sapukhin Aleksandr Aleksandrovich -
Moscow State University of Civil Engineering (MGSU)
Candidate of Technical Sciences, Associate Professor, Department of Hydraulics, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Kurochkina Valentina Aleksandrovna -
26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation
Candidate of Technical Sciences, Associate Professor, Department of Hydraulics and Water Resources, 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation, ;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Novikov Sergey Olegovich -
Moscow State University of Civil Engineering (MGSU)
student, Institute of Construction and Architecture, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
The authors consider particular methods, technologies and organizational aspects that may be implemented in the construction and renovation of pipelines using polythene materials instead of metals due to their economic and practical efficiency. It is noteworthy that the corrosion problem of steel pipelines is the phenomenon of metal destruction that reduces the throughput of pipelines and facilitates obstructions, juncture cleavages and water leaks as a result of reduction of service lives of pipelines. The authors analyzed the efficiency of polythene pipes from the viewpoint of hydraulic processes and the economic expediency; the authors identified that the polythene pipe’s throughput is 3 times as much as the one of steel pipes. Also, the authors determined the economic efficiency of polythene pipes: USD 0.5 million per 1 kilometer of pipeline.The authors take account of the technology-related aspect, as the water pipeline construction and reconstruction processes are limited by dense urban environments or due to the absence of overhaul factories in the close proximity to pipelines. Therefore, the results of the analysis evidence the efficiency of application of polythene in construction and reconstruction of pipeline engineering systems. It is highly resistant to abrasion and corrosion; it boosts the water flow velocity due to the low rough-ness of the internal surface; its service life is long enough, and its transportation is problem-free.
DOI: 10.22227/1997-0935.2013.7.96-105
References
- Kurochkina V.A. Vliyanie vozdukha v truboprovode na velichinu gidravlicheskogo udara [Influence of Air inside Pipelines onto Water Hammer Intensity]. Stroitel’stvo — formirovanie sredy zhiznedeyatel’nosti : Sb. trudov IV Mezhdunar. mezhvuz. nauch.-prakt. konf. molodykh uchenykh, aspirantov i doktorantov. [Construction – Formation of the Environment. Collected works of the 4th International inter-university science and practice conference of young researchers, postgraduates and doctoral students]. Moscow, 2001, pp. 84—88.
- Sapukhin A.A., Pavlov E.I., Gergalov L.A. Opredelenie raskhodov v vodootvodyashchikh kollektorakh, rabotayushchikh v napornom rezhime [Identification of Consumption Rates in Sewage Reservoirs Operating in the Pressure Mode]. Stroitel’nye materialy, izdeliya i santekhnika [Construction Materials, Products and Sanitary Engineering]. Kiev, Budivel’nik Publ., 1987, no. 10, pp. 35—42.
- Khachaturov A.K., Rubashov A.M. Vodno-khimicheskiy rezhim sovmestnoy raboty sistemy oborotnogo okhlazhdeniya TETs i teploseti [Water Chemistry Mode of Joint Operation of the System of Reverse Cooling of TPPs and Heating Networks]. Ochistka prirodnykh i stochnykh vod. Sb. nauch. tr. [Treatment of Natural and Sewage Water. Collection of research works]. Moscow, 2009, pp. 20—24.
- Frenkel’ N.Z. Gidravlika. Ch. 1 [Hydraulics. Part 1]. Moscow – Leningrad, Gosenergizdat Publ., 1956, pp. 210—239.
- Krzys B. White Paper on Rehabilitation of Waste Water Collection and Water Distribution Systems. EPA, 2009, no. 9, pp. 24. Available at: http://nepis.epa.gov. Date of access: 17.04.13.
- Ginzburg Ya.N., Leznov B.S. Sovremennye metody regulirovaniya rezhimov raboty sistem vodosnabzheniya krupnykh gorodov [Contemporary Methods of Regulation of Modes of Operation of Water Supply Systems of Major Cities]. Vodosnabzhenie i sanitarnaya tekhnika. Sb. [Water Supply and Sanitary Engineering. Collected Works]. Moscow, GOSINTI Publ., 1976, pp. 51—62.
- Agachev V.I., Vinogradov D.A. Sostoyanie i perspektivy bestransheynogo metoda vosstanovleniya sistem vodosnabzheniya i vodootvedeniya [State of and Prospects for the Trenchless Method of Restoration of Water Supply and Discharge Systems]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Engineering]. 2003, no. 12, pp. 15—24.
- Kosygin A.B. Avariynyy remont vodoprovoda pri pomoshchi telerobotov [Emergency Repairs of Water Supply Pipelines Using Tele-operated Robots]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Engineering]. 2000, no. 2, pp. 9—16.
- Khramenkov S.V. Tekhnologiya vosstanovleniya truboprovodov bestransheynymi metodami [Technology for Restoration of Pipelines Using Trenchless Methods]. Sb. statey i publikatsiy Moskovskogo Vodokanala [Collected articles and publications of Vodokanal - Moscow Water Services Company]. Moscow, 2004, pp. 236—251.
- Najafi M. Structural Evaluation of No-Dig Manhole Rehabilitation Technologies. Benjamin Media, 2013. Available at: http://www.trenchlessonline.com. Date of access: 17.04.13.