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ABSTRACT

Introduction. Analytical solutions for problems of structural mechanics are not only an alternative approach to solving
problems of strength, reliability and dynamics of structures, but also the possibility for simple performance evaluations and
optimization of structures. Frequency analysis of planar trusses, most often used in construction and engineering, is an
important part of the study of structures.

Objectives — development of a three-parameter induction algorithm for deriving the analytical dependence of the natural
oscillation frequencies of the truss on the number of panels.

Materials and methods. A flat, statically definable truss with one additional external link and double braces has been
considered. The inertia properties of the truss are modeled by point masses located in the nodes of the lower straight truss
belt. Each mass is assumed to have only one vertical degree of freedom. The stiffness of all truss rods is assumed to be the
same. The task is to obtain analytical dependences of the oscillation frequencies of the proposed truss model on the number
of panels. The derivation of the desired formulas is performed by the method of induction in three stages — according to the
numbers of rows and columns of the compliance matrix, calculated using the Maxwell — Mohr formula and the number of
panels. To find common members of the obtained sequences of coefficients, an apparatus was used to compile and solve
the recurrent equations of the Maple computer mathematics system. The task of determining frequencies has been reduced
to the eigenvalue problem of a bisymmetric matrix.

Results. For the elements of the compliance matrix, general formulas have been found, according to which the frequency
equations are compiled and solved. It is shown that in the frequency spectra of trusses with different numbers of panels there
is always one common frequency (middle frequency) located in the middle of the spectrum. An expression is found for the
maximum value of the average oscillation frequency as a function of the height of the truss.

Conclusions. The proposed truss scheme, despite its external static indeterminacy and the lattice, which does not allow for
the calculation of forces by such methods as the method of cutting nodes and the cross section method, allows analytical
solutions for the natural frequencies of loads in the nodes. The obtained formulas have a rather simple form, and some
general properties, such as frequency coincidences for different numbers of panels and the presence of an analytically
calculated maximum of the average frequency function of the truss height, make this solution convenient for practical
structural evaluations.
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AHHOTALUMUA

BBegeHue. AHanutnyeckue peweHna 3agayd CTpOVITeJ'IbHOﬁ MeXaHUKN — He TOJIbKO aﬂbTepHaTMBHbll;l noaxon K peLlueHuto
npo6neM MNPOYHOCTN, HAOEXHOCTU U AUHAMUKN COOpy)KeHVIﬁ, HO 1 BO3MOXXHOCTb A/14 MPOCTbIX OLEHOK pa60TOCI‘IOC06HOCTM
nontTuMmnsaunn KOHCprKLlVIVI. YacToTHbIN aHanM3 NNocKmUx cbepM, Haumbonee YyacTo NPUMEHALWNXCA B CTPOUTENBbCTBE U
MalHOCTPOEHNN, ABNAETCA BaXXHOW COCTaBHOW YacTblO MCCneaoBaHus coopy)KeHwZ. Ll,erm — pa3pa60TKa anroputma
TpexnapameTqueCKoﬁ MHOYKUMWN ONnA BblBOAA aHanuTM4ecKon 3aBUCUMOCTU COBCTBEHHBIX YacToT kornebaHui (beprI oT
4Yucna naHeneun.
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MaTepuanbl u MmeToabl. PaccMoTpeHa nnockas ctaTuyecku onpeaenviMas oepma ¢ 0gHON AONONHUTENBHOM BHELLUHEN CBS-
3bl0 U CABOEHHbIMK packocamu. VIHepLMOHHbIe CBOMCTBa hepMbl MOAENUPYHOTCS TOYEYHBIMU Maccamu, PacnonoXeHHbIMU B
y3nax HXHero npsiMonMHenHoro nosica depmbl. Y Kaxaow Maccbl npeanonaraeTcs HanMyue TonbKo O4HON BEPTUKanbHON
cTeneHn cBoboapl. XKecTKoCTb BCeX CTEPXKHEN hepMbl MPUHNUMaETCst oauHakoBo. CTaBUTCS 3a4ada nonyyYyeHns aHanuTum-
YeCKUX 3aBUCMMOCTEN YacToT konebaHui NpeanoXeHHon Mmoaeny cepmbl OT Yncna naHenen. BeiBog nckomelx dopmyn
npoun3BoAMTCS METOAOM MHAYKLMW B TpU 3Tana — Mo HoOMepaMm CTPOK M CTon6LoB MaTpuLbl NOAATIMBOCTU, BbIYUCIIEHHOW
no copmyne Makcsenna — Mopa v no yvcny naHenen. [ins HaxoXaeHWs o6LMX YNEeHOB NoMyYeHHbIX NocneaoBaTenbHo-
cTeln k0adPPULIMEHTOB NPUMEHSINICS annapaT COCTaBIEHNS U PELLEHNSI PEKYPPEHTHBIX YPAaBHEHUIA CUCTEMbI KOMMBIOTEPHOW
MaTematukn Maple. 3agada onpegeneHust 4acToT cBenach K 3agade Ha COOCTBEHHbIE 3HaYeHUs1 BUCUMMETPUYHON MaTpULLbI.
PesynbTaTthbl. [1ng aneMeHTOB MaTpuLbl NOAATIMBOCTU HaaeHbl obLne opmynbl, MO KOTOPbIM COCTaBMEHbI U PeLLEHbI
YacToTHble ypaBHeHus. MNokasaHo, 4YTO B CrekTpax 4acToT pepM C pa3nMyHbIM YUCIIOM NaHenewn Bceraa npucyTcTByeT ogHa
obLas yacToTa (cpegHsas YacToTa), pacnonaratoLascs B cepeanHe cnektpa. HangeHo BbipaxeHue Ans MakcumarbHOro
3Ha4YeHns cpegHen YacToTbl konebaHuii Kak dyHKLMN BbICOTbI (hepMbl.

BbiBogbl. MpeanoxeHHas cxema epMbl, HECMOTPS Ha CBOK BHELLIHIOW CTaTUYECKY0 HEONPeaenuMOCTb U pPeLLETKY, He
NO3BOSALLYI0 MPUMEHATb A1 pacyeTa YCUN1n Takne MeTodbl, Kak MEeTOf, Bbipe3aHus y3roB 1 MeTOA CEYEHUIA, JonyckaeT
aHanuTuyeckne peLleHus Ans YacToT coBCTBEHHBIX KonebaHwui rpy3oB B yanax. MNonyyeHHble hopMyrnbl UMEKT JOCTaTOYHO
NpOCTOW BUA, a HeKoTopble 06LLMe CBOMCTBA, Takne Kak COBMageHns 4acToT A4S pasHblX YUCen naHenemn n Hanvuve aHa-
NUTUYECKN pacCcYnTbIBAEMOro MakcMymMa OyHKLUM CpegHen 4acToTbl OT BbICOTbl (DEPMbI, fienatoT 3TO peLleHne yaoOHbIM
ONsi IPaKTUYECKNX OLEHOK KOHCTPYKLIWIA.

KNIOYEBBIE CINOBA: yactota konebanuii, depma, nHgykums, Maple, aHanutnyeckoe pelueHune

ana UMTUPOBAHWA: KupcaHose M.H., TuHbkos [].B. Analysis of the natural frequencies of oscillations of a planar truss
with an arbitrary number of panels // BectHuk MI'CY. 2019. T. 14. Bein. 3. C. 284-292. DOI: 10.22227/1997-0935.2019.3.284-292

INTRODUCTION

Modern computer systems of symbolic mathemat-
ics make it possible to find analytical solutions to prob-
lems of structural mechanics as an alternative approach
to solving the problems of strength, reliability, and
dynamics of structures [1-7]. In [8—13], the induction
method involving the operators of the Maple system
obtained formulas for the dependence of the deflection
of planar trusses on the number of panels. Analytical
solutions of problems on the oscillation of a load with
one degree on a truss with an arbitrary number of pan-
els were obtained in [14—17]. A more accurate picture
of the dynamics of trusses can be given by analyzing
a truss model with a distributed mass, or at least with
a mass distributed over the nodes of the lower belt. The
main difficulty in obtaining such solutions is to deter-
mine the rigidity of the structure. In the elastic stage of
the truss rods with small oscillations to find the compli-
ance matrix inverse to the stiffness matrix, a very con-
venient method is to use the Maxwell — Mohr formula.
The forces in the truss rods included in this formula
in solving the problems of the stiffness of the arches
[18-23], lattice [24-30] and spatial trusses [31-33]
were determined on the basis of the program [8—11]
written in Maple language on basis of the cutting knots
method. The main limitation for the analytical method,
designed for the analysis of systems with an arbitrary
number of panels, is the regularity of the truss schemes
[34, 35]. If there are periodically repeating structures
in the structure, for example, panels, then the induction
method is applicable to such trusses. R.G. Hutchinson

and N.A. Fleck [36, 37] dealt with the problems of the
existence of regular statically definable schemes, and
methods of their calculation. Some particular problems
of periodic trusses are considered in [38].

MATERIALS AND METHODS

Consider a truss with double braces and an ad-
ditional horizontal external link on the left support
(Fig. 1). The truss has 2n panels and n, =16n+4 rods,
including four rods, modeling the supports. It is as-
sumed that all rods have the same stiffness £F. An ana-
lytical solution of the problem of the deflection of this
truss for an arbitrary number of panels is given in [39].
Solutions for the case of uniform load over the nodes of
the upper and lower belts are obtained by generalizing
a number of solutions for trusses with the number n of
panels in half span from 1 to 10:

A=PC,(a+2bh> +¢*)[(WEF),

where ¢=+a’+h* is the length of the brace; C,
is a coefficient depending on the type of load. The
Maxwell — Mohr formula was used to calculate the
deflection.

A4S sl

J JJ
A P; R
where /,and S, is the length and force in the / th rod from
the action of the load; s is the force from a single verti-
cal force applied to the central node in the lower belt.
The forces in the rods were determined by cutting the
nodes from the system of linear equilibrium equations
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Fig. 1. The truss scheme, n =3

compiled for all the nodes of the structure as a whole,
which made it possible to overcome the external static
indeterminacy of the truss. The solution of the system
of linear equations was in symbolic form according to
a program written in the language of computer math-
ematics Maple.

To derive a formula for the dependence of the fre-
quency of oscillations of loads located in the nodes of
the lower belt on the number of panels and the geom-
etry of the structure, we will use the same method. The
equations of vertical oscillations of cargo we write in
the form

[M,]Y +[D,]¥ =0, (1)

where [M ] is the matrix of inertia; Y is the vector of
vertical displacements of masses; [D ] is the stiffness

matrix; Y is the vector of accelerations. If the masses
of the loads are the same, then the inertia matrix is di-
agonal:

0
m .. 0

M, =
0 0 ... m

The compliance matrix [B ], the inverse stiffness
matrix [D ], has the following elements:
ng—4 ) )
b, =SSP 1 J(EF), 2)
k=1
where S\ is the force in the rod & from the action of

a single vertical force at node 7; /, is the length of the
rod. Multiplying (1) from the left by the matrix [B ], we

get the equation m[Bn]I? +7Y = 0. The vector of vertical
displacements will be represented as a periodic function
Y = A4sin(wt + ¢,). From here, taking into account the

relation Y = —-»’Y, we obtain an eigenvalue problem
[B,]Y =LY, where

A =1/(mw?). 3)

Thus, to solve the problem, it is necessary to ob-
tain analytical expressions for the matrix members [B ].
This matrix is symmetric not only with respect to the
main diagonal (due to symmetry (2) with respect to
i and j), but also with respect to the secondary diago-
nal. The last property is related to the symmetry of the
structure. The vertical displacement of the node & from
the action of a unit load at the node 2n — £ is equal to
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the displacement of the node 2 — k from the unit force
at the node k.

Bisymmetric matrices were studied in [40]. When
n =3 we have the following form of the matrix

205 308 315 250 137
* 520 558 452 %

[B]=2] = = 6571 * x|
L. * % * *
% % % % %

where denoted 1 = (a3 +2bh° +¢° )/(3h2EF) , and the
* symbol denotes elements whose values follow from
the properties of the matrix symmetry. This kind of re-
sult allows, in the decision process, to calculate by the
formula not for all values of i, j =1, 2, ..., 2n — 1, but
only forj=1,...,n,i=j ... 2n—j, which significantly re-
duces conversion time. To obtain the common members
of the sequences in the rows of the matrix [B ], we use
the rff_findrecur operator of the Maple system’s gen-
func package, which returns a recurrent equation that is
satisfied by the sequence members. Then the rsolve op-
erator gives a solution to the equation defining the com-
mon term of the sequence. The result can be obtained if
the sequence under investigation has a sufficient length.
This task requires a sequence of at least eight. There-
fore, all calculations must be started from the trusses,
the number of panels is more than four. For the first row
(7 = 1) of the matrix with n = 5, consisting of elements
657, 1128, 1407, 1518, 1485, 1332, 1083, 762, 393, we
have the equation

by =4by . —6b s+ 4y b, =1, o, 201

The solution of this equation has the form
by; =4i* —120i” +803i —30. Similarly for other lines

b, ., =4i" —108i* +587i+549,i=1, .., 2n-3,
by, =4i° =961 +403i+872,i =1, .., 2n-5,
b, =4 —84i" +251i+987,i=1, .., 2n-7.

In the general case, for arbitrary j, we have an ex-
pression b, . =4’ —o, i’ +a,i—0o,s, where the
coefficients a5, 05, 05 are to be determined. The
sequence of coefficients with i* has a fairly obvious
common term o, 5 =12;j—132. For other sequences,
the rgf_findrecur and rsolve operators are required:
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o5 =167 =264, +1051,
05 =8j° =176, +1051-913.

Solutions are obtained for n = 5. To generalize the
solution to an arbitrary number of panels, it is required
to repeat the output for other values of n. Omitting the
intermediate results we give the corresponding ex-
pressions:

n==6:

0,5 =12,/-156,

o5 =16,° =312 +1451,

o5 =8/ —208;% +1451 1287,

n="7:
a, 5 =12;-180,

o5 =16,> =360 +1915,
05 =8 —240;% +1915/-1725,

Summarizing these expressions for the general
case, we obtain

oy, =12(j—1-2n),
oy, =167 —24(1+2n)j+32n° +48n +11,
o, =87 —16(1+2n) /> +
+(32n* +48n+11)j —32n* —22n-3.

Together with the expression
b

3 2 .
-1 = 4i° - a’2,nl + al,nl - C(’O,n
these coefficients constitute the main basic part of the
matrix, the reflection of which relative to the main and
secondary diagonal gives the full matrix, whose eigen-
values give the solution. For reflection on the main di-
agonal, use the ratios
b;=b;, j=1 ..2n=1Li=j+1, .., 2n-1.
Elements that are symmetrical with respect to the
secondary diagonal are obtained using the relations
bionj=byu i j=1 s 2n=1i=j+1, .., 2n—1.

1

RESULTS

The result of induction on the three parameters
were the expressions for the elements of the matrix, the
eigenvalues of which give the oscillation frequencies
of the truss, whose inertial properties are modeled by
weights in the nodes of the lower belt, which allow only
vertical displacements. The oscillation frequencies are
determined by the formula (3) as applied to trusses with

given elastic and geometric characteristics. For n = 2,
we have the matrix

75 90 57
[B,]=2[90 132 90|,
"l57 90 75

The eigenvalues of the matrix are
M =9, &y =3(22£1542 ), (4)

Compliance matrix at n = 3:

205 308 315 250 137
308 520 558 452 250
[33]=% 315 558 657 558 315,
250 452 558 520 308
137 250 315 308 205

Eigenvalues of this matrix:

A =9, A, =421, &y =101/3,

5
hops = 6(54 313, ©)

When n = 4, the set of seven eigenvalues consists
of three values (4) and

hgs = 3(172 +118v2 £+/57 236 £ 406242 )n,
hes = 3(172 +118v/2 F4/57 236+ 406242 )n-

It is noted that for all numbers of panels 7 in the
spectrum of natural frequencies there is a value A, =9n,
and for even n the values A, ; =3(22+ 15v/2)n are also
included in the spectrum. In addition, calculations show
that for numbers » multiple of three, the spectrum in-
cludes values (5), and for numbers » multiple of four,
the spectrum includes values of the spectrum for n = 4.
It can be assumed that a more general statement is true:
the frequency spectrum of a truss with the number
n=kk, of panels includes formulas for the frequency
spectra of trusses with the number of panels &, and k,.
The assertion is verified for a number of numbers, but
in the general case it still requires proof. For n =5, the
curves of frequency versus truss height reveal a maxi-
mum (Fig. 2).

This solution was obtained for mass m = 100 kg,
stiffness EF =2,0-10°N, panel length @ = 3 m and
height of struts b = 1 m. The following regularity is
noted in the graphs: the frequency obtained from the
eigenvalue A, =9n present in the solutions for any # is
located in the middle of the spectrum. This is confirmed
by graphs plotted for other values of n. Analytical repre-
sentation of the solution allows finding the exact values
of the extremal point. From the condition dw*/dh =0
where
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Fig. 2. The natural frequencies of the truss (rad /s), depending on the height # withn =5

h3EF
3\/m(a3 +2bh? +c3)

. 3EF .
that the maximum frequency o*,,, = ———————=1s

3 /m(3a+ 2b)

reached when the height value 4 = a.

(o*=1/ mh\, =

CONCLUSIONS

Methods of symbolic mathematics made it pos-
sible to find not only exact expressions for the ele-
ments of the matrix that defines the eigenfrequencies
of free oscillations of loads in the truss nodes, but also
to obtain analytical expressions for the frequencies.
In a numerical analysis of the results obtained, it was
also found that, regardless of the number of panels, the
design under consideration has the same oscillation
frequency located in the middle of the spectrum. The
comparative simplicity of the solution also allowed us
to find the exact expression for the extreme point on
the graph of the dependence of the average frequency
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on the height of the truss. A significant simplification
in the derivation of the desired formulas turned out to
be a technique based on the bisymmetric properties of
the compliance matrix, which reduces the calculation
of all elements of the matrix to the calculation of only
the elements of its basic triangle with the subsequent
reflection of elements relative to the main and second-
ary diagonal. Certainly, the experience of the authors
in solving the problems of deflection of statically de-
finable flat trusses in analytical form by the method of
induction [8—11] was useful for successful work. Com-
pared to these tasks, the solved problem of the oscil-
lation frequencies of a system with many degrees of
freedom is significantly more difficult due to the three
levels of induction in rows and columns of the matrix
and in the number of panels. So if in the simple prob-
lem of deflection of the generalization of the result to an
arbitrary number of panels, it is necessary in analytical
form to solve on average k problems about the forces in
the rods and the deflection of the truss, then with triple
induction of such problems already £°.
Verification of the results obtained numerically.
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