DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

FIELD SURVEY OF SELF-HEALING OF CRACKS IN THE IMPERVIOUS ELEMENT OF BORED CLAY-CEMENT CONCRETE PILES

Вестник МГСУ 3/2018 Том 13
  • Kotlov Oleg Nikolaevich - Head of the Department of the Foundations, Earth and Underground Structures, AO “The B.E. Vedeneev All Russia Institute of Hydraulic Engineering” (B.E. Vedeneev VNIIG) Candidate of Geological-Mineralogical Sciences, Head of the Department of the Foundations, Earth and Underground Structures, AO “The B.E. Vedeneev All Russia Institute of Hydraulic Engineering” (B.E. Vedeneev VNIIG), 21 Gzhatskaya st., St. Petersburg, 195220, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Orischuk Roman Nikolaevich - AO “The B.E. Vedeneev All Russia Institute of Hydraulic Engineering” (B.E. Vedeneev VNIIG) Chief Executive, AO “The B.E. Vedeneev All Russia Institute of Hydraulic Engineering” (B.E. Vedeneev VNIIG), 21 Gzhatskaya st., St. Petersburg, 195220, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Gunyashova Faina Ivanovna - - Laboratory of the Engineering Geology, AO “The B.E. Vedeneev All Russia Institute of Hydraulic Engineering” (B.E. Vedeneev VNIIG) Leading Engineer, Laboratory of the Engineering Geology, AO “The B.E. Vedeneev All Russia Institute of Hydraulic Engineering” (B.E. Vedeneev VNIIG), 21 Gzhatskaya st., St. Petersburg, 195220, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 322-329

The article contains a description of the methodology and the results of field experiments on self-healing in the impervious element of bored piles filled with clay-cement concrete at the site of temporary shoring of excavation pit of the main structures of Nizhne-Bureyskaya HPP. The results of the experiments allowed us to determine the suitability of local sand from the quarry №5 for self-healing of cracks. Recommendations for quality control of the sandy soil, placed into the transition zones of the dam, were developed. Subject: field studies of colmatization of through cracks in clay-cement concrete diaphragm of earth dams at the site of temporary shoring of excavation pit of the main structures of Nizhne-Bureyskaya HPP. Research objectives: determine possibility of application of the sand material, existing in local quarries, as a contact layer that provides self-healing of cracks in case of their creation in the body of the clay-cement concrete diaphragm of the earth dam of Nizhne-Bureyskaya HPP in the process of its operation. Materials and methods: field experiments were conducted on a transverse shoring of the excavation pit of the main structures of Nizhne-Bureyskaya HPP. Conducted experiments consisted in self-healing of artificial cracks by sandy material arranged in clay-cement concrete piles of temporary shoring, for which a cylindrical cavity for accumulation of sandy material was created in the body of the pile by drilling. At the bottom of the pile from the pit, artificial holes were created for self-healing. Results: it was experimentally confirmed that when using sand from the quarry № 5, the through cracks in the diaphragm of the dam of Nizhne-Bureyskaya HPP will be completely colmatized by the soil of the healing layer located in front of the top face of the diaphragm. The sand from the quarry № 5 can be used as a material of the contact layer that provides self-healing of cracks in clay-cement concrete diaphragm of the earth dam, and when it is used, it is necessary to control the recommended granulometric composition of sand and ensure absence of lumps of clayish soils. Conclusions: in the field conditions, we obtained the values of hydraulic gradients at which takes place the self-healing of cracks in clay-cement concrete diaphragm of the earth dam. The requirements to granulometric composition of the contact layer in the structure of the earth dam were clarified. Recommendations were developed for quality control of soil when laying the contact layer of the earth dam.

DOI: 10.22227/1997-0935.2018.3.322-329

Cкачать на языке оригинала

Safety assessment of a bored pile diaphragm in a medium-height dam

Вестник МГСУ 1/2014
  • Sainov Mikhail Petrovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Hydraulic Engineering, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Kotov Filipp Viktorovich - Moscow State University of Civil Engineering (MGSU) assistant, Department of Hydraulic Engineering, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 153-163

The article deals with the analysis of embankment dams of a new type: a rockfill dam with a clay-cement concrete diaphragm built by bored-pile method. The authors give the results of numerical modeling of a stress-strain state of 69 m high dam, where a diaphragm in the form of a slurry trench cutoff wall cuts the whole dam body and a23 m deep gravel-pebble foundation. The co-authors describe a dam design where the diaphragm is constructed in three lifts. The diaphragm lifts are connected by slabs made of clay-cement concrete or clay. Numerical modeling was carried out with the use of the author’s computer program with consideration of non-linearity of soils deformation. Analyses showed that clay-cement concrete of a slurry trench cutoff wall is in a favorable stress state, as clay-cement concrete by its deformation characteristics (E = 100 МPа) is close to gravel-pebble soil. The diaphragm deflections turned to be small; therefore, tensile stresses will not occur in it. In the diaphragm the clay-cement concrete is in a state of triaxial compression, therefore, its strength will be higher than unconfined compression strength (1-2 МPа). It may be expected that its strength will be provided. The nodes of connection of the slurry trench cutoff wall lifts also demonstrate safe operation.

DOI: 10.22227/1997-0935.2014.1.153-163

Библиографический список
  1. Radchenko V.G., Lopatina M.G., Nikolaychuk E.V., Radchenko S.V. Opyt vozvedeniya protivofil'tratsionnykh ustroystv iz gruntotsementnykh smesey [Experience of Building Geomembrane Liners of Soil-cement Mixtures]. Gidrotekhnicheskoe stroitel'stvo [Hydraulic Engineering]. 2012, no. 12, pp. 46—54.
  2. Ganichev I.A., Meshcheryakov A.N., Kheyfets V.B. Novye sposoby ustroystva protivofil'tratsionnykh zaves [New Ways of Producing Ground Water Cutoffs]. Gidrotekhnicheskoe stroitel'stvo [Hydraulic Engineering]. 1961, no. 2, pp. 14—18.
  3. Tsoy M.S.-D., Aldanov A.G., Radchenko V.G., Semenov Yu.D., Danilov A.S., Smolenkov V.Yu. Vozvedenie protivofil'tratsionnoy zavesy metodom struynoy tsementatsii v osnovanii plotiny Sangtudinskoy GES-1 [Building Ground Water Cutoff by Jet Grouting in the Dam Foundation of Sangtudinskaya Water Power Plant]. Gidrotekhnicheskoe stroitel'stvo [Hydraulic Engineering]. 2008, no. 5, pp. 32—37.
  4. Baranov A.E. Iz opyta proektirovaniya i stroitel'stva Yumaguzinskogo gidrouzla na reke Beloy [The Experience of Designing and Building Yumaguzinskiy Hydroelectric Complex on the River Belaya]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2006, no. 2, pp. 112—122.
  5. Vaughan P.R., Kluth D.J., Leonard M.W., Pradoura H.H.M. Cracking and Erosion of the Rolled Clay Core of Balderhead Dam and the Remedial Works Adopted for its Repair. Transactions of 10th International Congress on Large Dams. Montreal, 1970, vol. 1, pp. 73—93.
  6. Bellport B.P. Bureau of Reclamation Experience in Stabilizing Embankment of Fontenelle Earth Dam. Transactions of 9th International Congress on Large Dams. Istanbul, 1967, pp. 67—79.
  7. Malyshev L.I., Rasskazov L.N. Sostoyanie plotiny Kureyskoy GES i tekhnicheskie resheniya po ee remontu [Dam State of Kureyskaya Water Power Plant and Technical Solutions for its Repair]. Gidrotekhnicheskoe stroitel'stvo [Hydraulic Engineering]. 1999, no. 1, pp. 31—36.
  8. Malyshev L.I., Shishov I.N., Kudrin K.P., Bardyugov V.G. Tekhnicheskie resheniya i rezul'taty rabot po sooruzheniyu protivofil'tratsionnoy steny v grunte v yadre i osnovanii Kureyskoy GES [Technical Solutions and Working Results in the Process of Building Filtration-proof Wall in the Soil of the Core and Foundation of Kureyskaya Water Power Plant]. Gidrotekhnicheskoe stroitel'stvo [Hydraulic Engineering]. 2001, no. 3, pp. 31—36.
  9. Lorenz W., List F. Application of the Trench Diaphragm Method in Constructing the Impervious Core of Dams Consisting in Part of the Low-grade Fill Material. Transactions of 12th International Congress on Large Dams. 1976, Mexico, pp. 93—104.
  10. Strobl T., Shmid R. Wadi Hawashinah Dam. Oman. Ground Water Recharge Dam to Stop Salt Water Instrusion. Strabag. Dam Engineering in Kenya, Nigeria, Oman and Turkey. Cologne, April 1997, no. 52, pp. 67—68.
  11. Korolev V.M., Smirnov O.E., Argal E.S., Radzinskiy A.V. Novoe v sozdanii protivofil'tratsionnogo elementa v tele gruntovoy plotiny [New in Creating Filtration-proof Element in the Body of Ground Water Dam]. Gidrotekhnicheskoe stroitel'stvo [Hydraulic Engineering]. 2013, no. 8, pp. 2—9.
  12. Rasskazov L.N., Bestuzheva A.S., Sainov M.P. Betonnaya diafragma kak element rekonstruktsii gruntovoy plotiny [Concrete Membrane as an Element of Ground Water Dam Reconstruction]. Gidrotekhnicheskoe stroitel'stvo [Hydraulic Engineering]. 1999, no. 4, pp. 10—16.
  13. Sainov M.P. Napryazhenno-deformirovannoe sostoyanie protivofil'tratsionnykh «sten v grunte» gruntovykh plotin. Avtoreferat. dissertatsii kandidata tekhnicheskikh nauk [Stress-Strain State of “Slurry Trench Cutoff Walls” of Ground Water Dams. Thesis Abstract of a Candidate of Technical Sciences]. Moscow, 2001.
  14. Rasskazov L.N., Dzhkha Dzh. Deformiruemost' i prochnost' grunta pri raschete vysokikh gruntovykh plotin [Soil Deformability and Strength in the Process of Calculating High Ground Water Dams]. Gidrotekhnicheskoe stroitel'stvo [Hydraulic Engineering]. 1987, no. 7, pp. 31—36.
  15. Sainov M.P. Osobennosti chislennogo modelirovaniya napryazhenno-deformirovannogo sostoyaniya gruntovykh plotin s tonkimi protivofil'tratsionnymi elementami [Features of Stress-strain State Numerical Modeling of Ground Water Dams with Thin Filtration-proof Elements]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 10, pp. 102—108.
  16. Marsal Marsal R.J. Large Scale Testing of Rockfill Materials. Journal of the Soil Mechanics and Foundations Division. 1967, vol. 93, no. 2, pp. 27—43.

Cкачать на языке оригинала

Clay-cement concrete diaphragm of the type "slurry wall" in the 100 meter high dam

Вестник МГСУ 9/2014
  • Radzinskiy Aleksandr Vladimirovich - LLC "Gidrospetsproekt" engineer, LLC "Gidrospetsproekt", 11/10-3 Letnikovskaya str., 115114, Moscow, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Rasskazov Leonid Nikolaevich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Department of Hydraulic Engineering, Honored Scientist of the Russian Federation, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Sainov Mikhail Petrovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Hydraulic Engineering, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 106-115

In the article the authors estimate the possibility of building a high (100 m high) stone dam with clay-cement concrete diaphragm. This diaphragm is used as an antifiltering element and it is made of secant piles method of clay-cement concrete (method of "slurry wall"). This diaphragm should be constructed in several phases, in our example example in three stages. Numerical studies of the stress-strain state of such a dam show that considerable compressive stresses can appear in the diaphragm. These stresses can be significantly (3...4 times) greater than the strength of clay-cement concrete in compression. However it should be taken into consideration that the diaphragm of such a high dam will be crimped by horizontal stresses, i.e. clay-cement concrete will operate in the triaxial compression. Under these conditions the strength of clay-cement concrete will be significantly higher, therefore, the diaphragm reliability might be provided with a margin. For this reason, the most important issue in the engineering of a high dam with such type of diaphragm is to select the required composition of clay-cement concrete. Increasing its strength by extension of the cement fraction could increase modulus of deformation. Therefore it could lead to compressive stress increase and the strength state degradation. Hydrostatic pressure generates the areas of tensile stresses in the clay-cement concrete diaphragm due to the arising bending deformation. It threatens the formation of cracks in the clay-cement concrete, especially in the nodes interface diaphragm queues. It is recommended to match the diaphragm queues using ferroconcrete galleries. This should ensure flexibility of deformation between the gallery and the diaphragm.

DOI: 10.22227/1997-0935.2014.9.106-115

Библиографический список
  1. Korolev V.M., Smirnov O.E., Argal E.S., Radzinskiy A.V. Novoe v sozdanii protivofil'tratsionnogo elementa v tele gruntovoy plotiny [New Things in the Creation of Antifiltering Element in the Body of a Subsurface Dam]. Gidrotekhnicheskoe stroitel'stvo [Hydraulic Engineering]. 2013, no. 8, pp. 2—9.
  2. Kudrin K.P., Korolev V.M., Argal E.S., Solov'eva E.V., Smirnov O.E., Radzinskiy A.V. Ispol'zovanie innovatsionnykh resheniy pri sozdanii protivofil'tratsionnoy diafragmy v peremychke Nizhne-Bureyskoy GES [Using Innovative Solutions to Create Impervious Diaphragm in the Jumper of Lower Bureyskaya HPP]. Gidrotekhnicheskoe stroitel'stvo [Hydraulic Engineering]. 2014, no. 7, pp. 22—28.
  3. Radchenko V.G., Lopatina M.G., Nikolaychuk E.V., Radchenko S.V. Opyt vozvedeniya protivofil'tratsionnykh ustroystv i gruntotsementnykh smesey [Experience in the Construction of Antifiltering Devices and Soil-cement Compositions]. Gidrotekhnicheskoe stroitel'stvo [Hydraulic Engineering]. 2012, no. 6, pp. 46—54.
  4. Gol'din A.L., Rasskazov L.N. Proektirovanie gruntovykh plotin [Engineering of Soil Dams]. 2nd edition. Moscow, ASV Publ., 2001, 375 p.
  5. Rasskazov L.N., Radzinskiy A.V., Sainov M.P. Vybor sostava glinotsementobetona pri sozdanii «steny v grunte» [Choice of Clay Cement Concrete to Create "Slurry Trench" Cutoff Wall]. Gidrotekhnicheskoe stroitel'stvo [Hydraulic Engineering]. 2014, no. 3, pp. 16—23.
  6. Rasskazov L.N., Radzinskiy A.V., Sainov M.P. K prochnosti glinotsementobetona [To the Problem of Clay-cement Concrete Strength]. Gidrotekhnicheskoe stroitel'stvo [Hydraulic Engineering]. 2014, no. 8, pp. 26—28.
  7. Rasskazov L.N., Radzinskiy A.V., Sainov M.P. Prochnost' i deformativnost' glinotsementobetona v slozhnonapryazhennom sostoyanii [Strength and Deformability of Clay-cement Concrete in Complex Stress State]. Gidrotekhnicheskoe stroitel'stvo [Hydraulic Engineering]. 2014, no. 8, pp. 29—33.
  8. Rasskazov L.N., Radzinskiy A.V., Sainov M.P. Plotiny s glinotsementobetonnoy diafragmoy. Napryazhenno-deformirovannoe sostoyanie i prochnost' [Dams with Clay-cement Concrete Diaphragm. Stress-strain State and Strength]. Gidrotekhnicheskoe stroitel'stvo [Hydraulic Engineering]. 2014, no. 9, pp. 37—44.
  9. Malyshev L.I., Rasskazov L.N., Soldatov P.V. Sostoyanie plotiny Kureyskoy GES i tekhnicheskie resheniya po ee remontu [The Condition of Kureyskaya Hydraulic Power Station Dam and Technical Solutions for its Repair]. Gidrotekhnicheskoe stroitel'stvo [Hydraulic Engineering]. 1999, no. 1, pp. 31—36.
  10. O`Brien S., Dann C., Hunter G., Schwermer M. Construction of the Plastic Concrete Cut-off Wall at Hinze Dam. ANCOLD Proceedings of Technical Groups. Available at: http://www.bauerdamcontractors.com/export/sites/www.bauerdamcontractors.com/en/pdf/publications/Cutoff-Wall-Paper-09-ANCOLD-Conference---Final.pdf/. Date of access: 25.05.2014.
  11. Fedoseev V.I., Shishov I.N., Pekhtin V.A., Krivonogova N.F., Kagan A.A. Protivofil'tratsionnye zavesy gidrotekhnicheskikh sooruzheniy na mnogoletney. Opyt proektirovaniya i proizvodstva rabot merzlote [Antifiltering Curtain of Hydraulic Structures on Permafrost. Design Experience and Production]. Vol. 2, Saint Petersburg, VNIIG im. B.E. Vedeneeva Publ., 2009, pp. 303—316.
  12. Powell R.D., Morgenstern N.R. Use and Performance of Seepage Reduction Measures. Proc. Symp. Seepage and Leakage from Dams and Impoundments. American Society of Civil Engineers. Denver, CO, USA, 1985, pp. 158—182.
  13. Baltruschat M., Banzhaf P., Beutler S., Hechendorfer S. Cut-off Wall for the Strengthening of the Sylvenstein Reservoir (70 km south of Munich, Germany) : Cut-off Wall executed with BAUER cutter and grab and Plastic Concrete. BAUER Spezialtiefbau GmbH. Available at: http://www.bauerdamcontractors.com/export/sites/www.bauerdamcontractors.com/en/pdf/publications/paper_HYDRO-2013_bmi_2013_08_24_spa-bz_B_short.pdf. Date of access: 25.05.2014.
  14. Sainov M.P. Vychislitel'naya programma po raschetu napryazhenno-deformirovannogo sostoyaniya gruntovykh plotin: opyt sozdaniya, metodiki i algoritmy [Computer Program for the Calculation of the Stress-strain State of Soil Dams: the Experience of Creation, Techniques and Algorithms]. International Journal for Computational Civil and Structural Engineering. 2013, vol. 9, no. 4, pp. 208—225.
  15. Rasskazov L.N. Dzhkha Dzh. Deformiruemost' i prochnost' grunta pri raschete vysokikh gruntovykh plotin [Deformability and Strength of the Soil in the Calculation of High Soil Dams]. Gidrotekhnicheskoe stroitel'stvo [Hydraulic Engineering]. 1987, no. 7, pp. 31—36.
  16. Sainov M.P. Parametry deformiruemosti krupnooblomochnykh gruntov v tele gruntovykh plotin [Deformability Parameters of Coarse Soils in the Body of Soil Dams]. Stroitel'stvo: nauka i obrazovanie [Construction: Science and Education]. 2014, no. 2. Available at: http://www.nso-journal.ru/public/journals/1/issues/2014/02/2_Sainov.pdf. Date of access: 25.05.2014.
  17. Sainov M.P. Osobennosti chislennogo modelirovaniya napryazhenno-deformirovannogo sostoyaniya gruntovykh plotin s tonkimi protivofil'tratsionnymi elementami [Numerical Modeling of the Stress-Strain State of Earth Dams That Have Thin Rigid Seepage Control Elements]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 10, pp. 102—108.

Cкачать на языке оригинала

Результаты 1 - 3 из 3