DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

Bearing capacity of corroded bending reinforced concrete element

Вестник МГСУ 7/2014
  • Larionov Evgeniy Alekseevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Advanced Mathematics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow,129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 51-63

Many Russian and foreign scientists studied in their works bearing capacity of reinforced concrete elements. The principal difference of the presented approaches from the traditional ones is that they lack the necessity of artificial sizing as improbable for simultaneous getting preset limit values of corresponding parameters. In our paper we evaluated the bending moment, giving rise to limit stress strain behavior of corroded reinforced concrete beams with corroded concrete and tensile reinforcement. In order to reduce and simplify calculations we consider single reinforcement and ignore tensile reinforcement resistance, and in order to emphasize the idea of the approach we assume noncorrosiveness. The results of concrete stress strain state analysis are more reliable.

DOI: 10.22227/1997-0935.2014.7.51-63

Библиографический список
  1. Guzeev E.A., Mutin A.A., Basova L.N. Deformativnost' i treshchinostoykost' szhatykh armirovannykh elementov pri dlitel'nom nagruzhenii i deystvii zhidkikh sred [Deformability and Crack Resistance of Compressed Reinforced Elements with Long-Term Loading in Fluids]. Moscow, Stroyizdat Publ., 1984, 34 p.
  2. Komokhov P.P., Latynov V.I., Latynova M.V. Dolgovechnost' betona i zhelezobetona [Longevity of Concrete and Reinforced Concrete]. Ufa, Belaya reka Publ., 1998, 216 p.
  3. Bondarenko V.M. Nekotorye fundamental'nye voprosy razvitiya teorii zhelezobetona [Some Fundamental Questions of Reinforced Concrete Theory Development]. Stroitel'naya mekhanika inzhenernykh konstruktsiy i sooruzheniy [Structural Mechanics of Engineering Constructions and Buildings]. 2010, no. 1, pp. 20—34.
  4. Bondarenko V.M., Larionov E.A., Bashkatova M.E. Otsenka prochnosti izgibaemogo zhelezobetonnogo elementa [Evaluation of Bending Reinforced Element Strength] Izvestiya OrelGTU [News of Orel State Technological University]. 2007, no. 2 (14), pp. 25—28.
  5. Bondarenko V.M., Larionov E.A. Printsip nalozheniya deformatsiy pri strukturnykh povrezhdeniyakh elementov konstruktsiy [Deformation Superposition Frequency in Structural Damages of Construction Elements]. Stroitel'naya mekhanika inzhenernykh konstruktsiy i sooruzheniy [Structural Mechanics of Engineering Structures and Buildings]. 2010, no. 1, pp. 16—22.
  6. Aleksandrov A.B., Travush V.I., Matveev A.B. O raschete sterzhnevykh konstruktsiy na ustoychivost' [Collapse Method of Structural Design for Frame Structures]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2002, no. 3, pp. 16—19.
  7. Uliti V.V. Deformatsionnyy kriteriy pri analize ustoychivosti i prodol'nogo izgiba v usloviyakh fizicheskoy nelineynosti [Deformation Criterion in Rigidity and Buckling Analysis in Physical Nonlinearity]. Stroitel'naya mekhanika i raschet sooruzheniy [Structural Mechanics and Structural Analysis]. 2012, no. 1, pp. 34—39.
  8. Beddar M. Fiber Reinforced Concrete: Past, Present and Future. Beton i zhelezobeton — puti razvitiya: nauchnye trudy 2-y Vserossiyskoy (Mezhdunarodnoy) konferentsii po betonu i zhelezobetonu [Concrete and Reinforced Concrete — Development Path: Scientific Works of the 2nd All-Russian (International) Conference on Concrete and Reinforced Concrete]. Ìoscow, Dipak Publ., 2005, vol. 3, pp. 228—234.
  9. Hillerborg A., Modar M., Peterson P. Analysis of Crack Formation and Crack Grows in Concrete by Means of Fracture Mechanics and Finite Elements. Cem. and Concr. Res. 1976, no. 6, pp. 773—781.
  10. Pekau Î.A., Syamal Ð.Ê. Non-Linear Torsional Coupling in Symmetric Structures. J. Sound and Vibration. 1984, vol. 94, no. l, pp. 1—18.
  11. Kilar V., Fajfar P. Simple Push-Over Analysis of Asymmetric Buildings. Journal of Earthquake Engineering and Structural Dynamics. 1997, no. 26, pp. 233—249. DOI: http://dx.doi.org/10.1002/(SICI)1096-9845(199702)26:2<233::AIDEQE641>3.0.CO;2-A
  12. Tso W.K. Induced Torsional Oscillations in Symmetrical Structures. Journal of Earthquake Engineering and Structural Dynamics. 1975, pp. 337—346. DOI: http://dx.doi.org/10.1002/eqe.4290030404.
  13. Bondarenko V.M., Ivanov A.I., Piskunov A.V. Opredelenie korroziynykh poter' nesushchey sposobnosti szhatykh zhelezobetonnykh elementov pri reshenii po SNiP [Defining Corrosion Damages of Bearing Capacity of Compressed Reinforced Concrete Elements According to Construction Norms and Rules]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2011, no. 5, pp. 26—28.
  14. Bondarenko V.M., Kolchunov V.I., Klyueva N.V. Eshche raz o konstruktivnoy bezopasnosti i zhivuchesti zdaniy [Once Again on Constructive Building Security and Survivability]. RAASN. Vestnik otdeleniya stroitel'nykh nauk. Yubileynyy vypusk [Russian Academy of Architecture and Construction Sciences. Reports of Structural Sciences Department. Anniversary Issue]. 2007, no. 11, pp. 81—86.
  15. Bondarenko V.M. O vliyanii korrozionnykh povrezhdeniy na dissipatsiyu energii pri silovom deformirovanii betona [Corrosive Effect on Energy Dissipation in Force Deformation of Concrete]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2008, no. 6, pp. 24—28.

Cкачать на языке оригинала

INFLUENCE OF CORROSION ON ENERGY DISSIPATION UNDER DEFORMATION

Вестник МГСУ 9/2016
  • Larionov Evgeniy Alekseevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Advanced Mathematics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow,129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 26-34

Corrosive actions generate degradation of the bearing capacity of reinforced concrete elements of buildings and structures during their operation. Chemical corrosion occupies significant place among this actions. As a result of chemical reactions we evidence the change of mechanical characteristics of concrete and steel. In this paper the investigation of the problem is based on rheological equation of concrete state. In case of one-side contact of concrete with the environment layerwise chemical corrosive damages were educes. The author estimated the influence rate of chemical corrosive damages of concrete on its resistance. The dissipation of energy in compressed zone of corrosive-damaged beam is estimated. This estimation is related to the logarithmic decrement of damping under corrosional damages. The author considers. In the process of resistance of a structural element with a degrading module of total deformations equilibrium is only possible in case of increasing deformations and flexures. Account for this fact is important in the estimation of bearing capacity with the help of deformation criteria.

DOI: 10.22227/1997-0935.2016.9.26-34

Cкачать на языке оригинала

Modern state of Shukhov's translucent structures

Вестник МГСУ 12/2013
  • Koryakov Aleksandr Sergeevich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Metal Structures, senior research worker, Scientific and Research Laboratory on Investigating the Actual Operation of Building Structures and Constructions, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Evstaf'eva Elizaveta Borisovna - Moscow State University of Civil Engineering (MGSU) Researcher worker, Scientific and Research Laboratory on Investigating the Actual Operation of Building Structures and Constructions, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 84-92

The article focuses on such buildings as Moscow Central Post Office, State Museum of Fine Arts and GUM. All these buildings were constructed by famous Russian engineer Shukhov V.G. His 160th anniversary is celebrated in 2013.The skylight rectangular in the plan is a covering of General hall in Moscow Central Post Office. It has 3 tiers of glazing. The framework of this tier is a frame structure, which is based on the circumference on the cantilever trusses and, in addition, is hanging on the main trusses of the marquise. The bearing construction of the external lantern consists of ordinary, diagonal and bracing riveted trusses.The covering construction of State Museum of Fine Arts is a combined system, which consists of 2 types of metal trusses. The trusses located under the lamp are of polygonal shape and are bearing constructions for the attic floor, lower and middle glazing contours, as well as for lantern trusses. Lantern trusses of triangular shape serve for attachment of the external glazing contour and areas of metal roofing on the ridge, in the support zones and in the valley.Trading house of GUM has arch translucent covering. Bearing constructions of these coverings are roof arches of circular shape with cross shaped tie beams. Roof boarding was set on the booms made of rolled tees for glazing attachment. Lantern trusses have triangular shape and serve for attachment of an external contour glazing and plots metal roofing on the ridge, in the support zones and in the valley.The article presents the results of examinations, which have been performed by different organizations for the last 30 years.All these buildings are monuments of cultural heritage and they need constant supervision. The covering construction of Moscow Central Post Office needs repair and reconstruction.

DOI: 10.22227/1997-0935.2013.12.84-92

Библиографический список
  1. Kovel'man G.M. Tvorchestvo pochetnogo akademika inzhenera V.G. Shukhova [Creative Work of Honorable Member of the Academy, an Engineer V.G. Shukhov]. Moscow, Gosstroyizdat Publ., 1961, 363 p.
  2. Shukhov V.G. Izbrannye trudy. Stroitel'naya mekhanika [Selected Works. Structural Mechanics]. Editor A.Yu. Ishlinskogo. Moscow, Nauka Publ., 1977, 193 p.
  3. Otsenochnoe obsledovanie i tekhnicheskoe zaklyuchenie o vozmozhnosti sokhraneniya i ekspluatatsii nesushchikh metallicheskikh konstruktsiy svetovykh pokrytiy liniy GUMa [Evaluative Examination and Technical Estimation on the Possibility of Maintaining and Operation of the Bearing Metallic Structures of GUM Translucent Coverings]. TsNIIPSK Publ. D 227-91, Moscow, 1991.
  4. Mikhalev N.Ya. O sokhranenii unikal'nykh stal'nykh konstruktsiy svetoprozrachnogo pokrytiya Glavpochtamta v gorode Moskve [On Preserving Unique Steel Structures of Translucent Covering of the Moscow Central Post Office]. Nauchno-tekhnicheskiy vestnik Povolzh'ya [Scientific and Technical Proceedings of the Volga Region]. 2012, no. 6, pp. 315—318.
  5. Zaklyuchenie o tekhnicheskom sostoyanii metallokonstruktsiy shatrovogo fonarya zdaniya Mospochtamta [Report on the Technical State of the Metal Structures of Tent Lantern of Moscow Central Post Office]. GUP TsNIISK Publ., Moscow, 2001.
  6. Tekhnicheskiy otchet po teme: «Inzhenernoe obsledovanie stroitel'nykh konstruktsiy svetovogo fonarya zdaniya «Moskovskogo pochtamta» po adresu: ul. Myasnitskaya, d. 26a, str. 1» [Technical Report on the Topic: "Engineering Examination of Building Structures of the Skylight of Moscow Central Post Office Located at 26a-1 Myasnitskaya st.]. Pressmark ¹ 281/03. MGSU Publ., 2003.
  7. Obsledovanie metallokonstruktsiy shatrovogo fonarya Moskovskogo pochtamta i vydacha zaklyucheniya o vozmozhnosti ikh dal'neyshey ekspluatatsii [Examination of the Metal Structures of the Tent Lantern of Moscow Central Post Office and Approval of their Further Operation]. D 11-627, ZAO TsNIIPSK Publ., 2007.
  8. Tekhnicheskiy otchet «Naturnoe vizual'noe obsledovanie Glavpochtamta» [Technical Report "On-site Visual Inspection of Moscow Central Post Office"]. D M10-09-34, Kompaniya MAKOM Publ., Moscow, 2010.
  9. Rezul'taty inzhenerno-tekhnicheskogo obsledovaniya stroitel'nykh konstruktsiy pamyatnika arkhitektury zdaniya GMII im. A.S. Pushkina po adresu: ul. Volkhonka, 12. «Metallokonstruktsii krovli» [The Results of Engineering and Technical Examination of the Building Structures of a Monument of Architecture, the Building of Pushkin State Museum of Fine Arts Located at 12 Volkhonka st. "Steelwork of Roofing"]. Moscow State Mining University, ZAO «Triada — Kholding» Publ., 2004, vol. 1, book 1.
  10. Arkhitekturno-arkheologicheskie obmery zdaniya Muzeya izobrazitel'nykh iskusstv im. A.S. Pushkina [Architectural and Archeological Surveys of the Building of Pushkin State Museum of Fine Arts]. Tsentral'nye nauchno-restavratsionnye masterskie. Arkhitekturno-planirovochnaya masterskaya no. 2 [Central Scientific and Reconstruction Workrooms. Architectural Planning Workroom no. 2]. Vol. 1—4, 2004.
  11. Tekhnicheskiy otchet. Opredelenie tekhnicheskogo sostoyaniya nesushchikh i ograzhdayushchikh konstruktsiy, kategorii tekhnicheskogo sostoyaniya i velichin predel'nykh dopolnitel'nykh deformatsiy zdaniy, popadayushchikh v zonu vliyaniya stroitel'stva ob"ekta ¹ 4 «Kompleksnaya rekonstruktsiya, restavratsiya i prisposoblenie domovladeniya 3/5 (g. Moskva, M. Znamenskiy per.) pod Kartinnuyu galereyu iskusstva starykh masterov». Kn. 3. Zdanie po adresu: Moskva, ul. Volkhonka, d. 12, str. 1. D. m 10-11-48 [Technical Report. Determining the Technical State of Bearing and Enclosing Strictures, Categories of Technical State and Critical Redundant Deformation Values that Fall within the Influence of the Construction of Object # 4 'Complex Reconstruction, Restoring and Adjustment of the Housing Estate 3/5 (Moscow, Znamenskiy pereulok) for an Art Gallery of the Old Masters Art". Book 3. Building Located at 12-1, Volkhonka st., Moscow. D. m 10-11-48]. Moscow, Kompaniya MAKOM Publ., 2011.

Cкачать на языке оригинала

INFLUENCE OF THE GASEOUS REGIME OF THE INDOOR SWIMMING POOLONTO CORROSION OF REINFORCING BARS OF ENCLOSURE STRUCTURES

Вестник МГСУ 6/2013
  • Rymarov Andrey Georgievich - Moscow State University of Civil Engineering (MGSU) +7 (499) 188-36-07, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Smirnov Vladimir Viktorovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Senior Lecturer, Department of Heating and Ventilation, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 147-152

Evaporation of the swimming pool water into the indoor air causes penetration of the water vapour containing chlorine derivatives into the enclosure structures and corrosion of the reinforcement due to the presence of dissolved chlorine derivatives in the water. Water vapour migration through outdoor and indoor enclosures is intensive in the cold season, but it may also occur in the warm season. Bearing elements of outdoor and indoor enclosures are now made of the reinforced concrete that has fillers — Portland cement or other types of cement and steel, metal (steel) bars of different diameters. In “ideal” conditions, the concrete must stop corrosion of the steel reinforcement, but it does not happen this way in practice, as corrosion of the reinforcement is influenced by a number of factors.The concentration of chlorides that diffuse into the concrete is lower than the concentration of chlorides in the concrete, but their corrosive influence is higher because of their “non-free” condition. The authors describe the causes and results of corrosion of the steel reinforcement caused by derivatives of chlorine and boosted by the gaseous regime inside the swimming pool building. Analysis of the cases of influence of the water containing 3% of chlorine onto the corrosion of reinforced Portland cement aimed at the reduction of the reinforcement rod diameter is performed. Corrosion of bearing structures causes the loss of strength and durability of buildings, and this process is unsafe from the viewpoint of security of people.

DOI: 10.22227/1997-0935.2013.6.147-152

Библиографический список
  1. Smirnov V.V. Issledovanie vliyaniya parametrov mikroklimata na dolgovechnost’ nesushchikh konstruktsiy pomeshcheniya basseyna [Research into the Influence of the Microclimate Parameters onto the Durability of Bearing Structures of Buildings of Swimming Pools]. Moscow, MGSU Publ., 2009.
  2. Rymarov A.G. Rymarov A.G. Prognozirovanie parametrov vozdushnogo, teplovogo, gazovogo i vlazhnostnogo rezhimov pomeshcheniy zdaniya [Projection of Air, Heat, Gas and Humidity Regimen of Building Premises]. Academia [The Academy]. 2009, no. 5, pp. 362—364.
  3. Zaikin B.B., Moskaleychik F.K. Korroziya metallov, ekspluatiruyushchikhsya vo vlazhnom vozdukhe, zagryaznennom sernistym gazom ili khlorom [Corrosion of Metals Used in the Humid Air, Polluted by the Sulfur Dioxide Gas or Chlorine]. Naturnye i uskorennye ispytaniya. Sbornik MDNTP. [Field and Accelerated Tests. Collection of Moscow House of Science and Technology Promotion]. Moscow, MDNTP im. F.E. Dzerzhinskogo publ., 1972, pp. 160—168.
  4. Tupikin E.I., Saidmuratov B.I. Korroziya i zashchita stal’noy armatury v peschanykh betonakh [Corrosion and Protection of Steel Bars in Sand Concretes]. Moscow, VNIIEgaprom publ., 1991.
  5. Ovchinnikov I.G., Ratkin V.V., Zemlyanskiy A.A. Modelirovanie povedeniya zhelezobetonnykh elementov konstruktsiy v usloviyakh vozdeystviya khlorsoderzhashchikh sred [Behaviour Modeling of Structural Elements Made of Reinforced Concrete and Exposed to Chlorine-containing Environments]. Sbornik dokladov [Collection of Reports]. Saratov, SGTU Publ., 2000, pp. 50—55.
  6. Nikiforov V.M. Tekhnologiya metallov i konstruktsionnye materialy [Technology of Metals and Structural Materials]. Moscow, Vyssh. shk. publ., 1980.
  7. Fokin K.F. Stroitel’naya teplotekhnika ograzhdayushchikh chastey zdaniy [Thermal Engineering of Enclosing Components of Buildings]. Moscow, Stroyizdat Publ., 1973, 288 p.
  8. Gagarin V.G. Teplofizicheskie problemy sovremennykh stenovykh ograzhdayushchikh konstruktsiy mnogoetazhnykh zdaniy [Thermalphysic Problems of Contemporary Wall Enclosure Structures of Buildings]. Academia [The Academy]. 2009, no. 5, pp. 297—305.
  9. Moore J.F.A. and Cox R.N. Corrosion of Metals in Swimming Pool Buildings. Report 165, 1989.

Cкачать на языке оригинала

THE WAVE NATURE OF TUBERCLE CORROSION IN STEEL AND CAST IRON PIPES OF WATER SUPPLY SYSTEMS

Вестник МГСУ 3/2018 Том 13
  • Chukhin Valentin Aleksandrovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Associate Professor, Training Master of the Department of Water Supply and Sewerage, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Andrianov Aleksey Petrovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department of Water Supply and Sewerage, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 385-399

Subject: the article is devoted to the study of corrosion processes in the water supply pipeline network. Initial growth and spatial orientation of corrosive tubercle deposits in non-coated steel pipes were studied. Experimental data are presented and an analysis of conditions and mechanism of formation of corrosive tubercles in water pipes is carried out. An assumption is made about the effect of flow velocity on the formation, growth and spatial distribution of tubercle deposits on the inner surface of the pipe. Research objectives: study of the mechanism of metal pipes corrosion in the water supply systems; development and experimental verification of the hypothesis of formation of tubercle corrosion deposits in pipelines. Materials and methods: the literature data on morphology and composition of tubercle corrosion deposits is analyzed. An experimental study of the initial stage of steel pipe corrosion under static and dynamic conditions has been carried out. Shape and composition of corrosion deposits on the metal surface were analyzed with the help of scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The rate of corrosion in a steel non-coated pipe in cold tap water was measured. Results: the study of corrosion sediment shows that its formation and properties are significantly influenced by water flow rate. In the static regime, a uniform distribution of the anode and cathode areas, covered with loose sediment, is observed over the entire area of the sample. In the dynamic mode, the sediment is partially or completely removed from sample surface and the corrosion rate increases. The corrosion process proceeds with oxygen and hydrogen depolarization and contribution of hydrogen depolarization is significant. Over the anodic sections, a dense layer forms with magnetite formation during the cathodic reduction of iron hydroxides. The corrosion rate gradually decreases with time. The presence of sediment on the metal surface slows down the corrosion rate. Conclusions: the conducted studies showed that in the presence of water movement, larger anode and cathode areas are formed on non-galvanized steel pipe samples. These areas, in the course of further corrosion, are transformed into tubercles. Formation of two structural elements of future tubercle deposits was experimentally verified. Water flow velocity, along with the electrochemical processes, is a factor that directly influences the tubercle spatial arrangement and growth on the inner surface of the pipe.

DOI: 10.22227/1997-0935.2018.3.385-399

Cкачать на языке оригинала

Результаты 1 - 5 из 5