Pile-foundation system shock loading in an axisymmetric approach

Вестник МГСУ 8/2015
  • Vasenkova Ekaterina Viktorovna - Moscow State University of Civil Engineering (National Research University) (MGSU) Senior Lecturer, Department of Higher Mathematics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Zuev Vladimir Vasil’evich - Moscow State Institute of Radio Engineering, Electronics and Automation (MIREA Doctor of Physical and Mathematical Sciences, Professor, chair, Department of Applied Mathematics and Informatics, Moscow State Institute of Radio Engineering, Electronics and Automation (MIREA, 20 Stromynka str., Moscow, 107996, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 101-108

The basic problem of structural mechanics, namely the problem of pile shock loading sunk in a foundation, has been examined in an axisymmetric approach within defining relations for irreversible deformations offered earlier in the space of deformations. As a model of the theory of plasticity, the Mises model generalized by the authors has been accepted, the use of which solves a nonstationary system of nine two-dimensional equations with various entry and boundary conditions. Enlightened attitudes use approximate engineering approaches which allow estimating the behavior of a pile-foundation system. A solution is constructed mainly with the use of the theory of linear-elastic continuum. However they do not enable to consider various peculiarities of deformation behavior of soils and pile materials and to give an appropriate detailed picture of a system mode of deformation. Mechanical peculiarities of the behavior of foundation and pile materials discovered recently demand more enlightened attitudes to analyze a mode of deformation in a pile-foundation system considering both plasticity and fracture. The offered approach enables to give a complete picture of a mode of deformation in a pile-foundation system at any time and a picture of occurrence and development of plasticity and fracture zones.

DOI: 10.22227/1997-0935.2015.8.101-108

Библиографический список
  1. Ter-Martirosyan A.Z. Ostatochnye deformatsii i napryazheniya v gruntovoy srede pri deystvii tsiklicheskoy nagruzki [Residual Deformations and Stresses in Soil Medium under Cyclic Load]. Stroitel’stvo — formirovanie sredy zhiznedeyatel’nosti : sbornik nauchnykh trudov XXIII Mezhdunarodnoy mezhvuzovskoy nauchno-prakticheskoy konferentsii molodykh uchenykh, doktorantov i aspirantov, 14—21.04.2010 [Collection of Scientific Papers of the 23rd International Interuniversity Scientific-Practical Conference of Young Scientists, Doctoral and Post-Graduate Students “Construction — Formation of Living Environment”, 14—21.04.2010]. Moscow, MGSU Publ., 2010, pp. 815—819. (In Russian)
  2. Burlakov V.N., Ter-Martirosyan A.Z. Dilatansiya, vliyanie na deformiruemost’ [Dilatancy, iInfluence on Deformability]. Sbornik trudov yubileynoy konferentsii, posvyashchennoy. 80-letiyu kafedry mekhaniki gruntov, 110-letiyu N.A. Tsytovicha, 100-letiyu S.S. Vyalova, Moskva [Proceedings of the Jubilee Conference Dedicated to the 80th Anniversary of the Department of Soil Mechanics, the 110-year Anniversary of N.A. Tsytovich, the 100th Anniversary of S.S. Vyalov, Moscow]. Moscow, MGSU Publ., 2010, pp. 105—112. (In Russian)
  3. Ter-Martirosyan Z.G., Ala Said Mukhammed Abdul Malek, Ter-Martirosyan A.Z., Ainbetov I.K. Napryazhenno-deformirovannoe sostoyanie dvukhsloynogo osnovaniya s preobrazovannym verkhnim sloem [Stress-Strain State of a double-layer foundation with a transformed upper layer]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2008, no. 2, pp. 81—95. (In Russian)
  4. Zuev V.V., Shmeleva A.G. Osesimmetrichnoe udarnoe nagruzhenie uprugoplasticheskoy sredy s razuprochneniem i peremennymi uprugimi svoystvami [Axisymmetric Shock Loading of an Elasto-Plastic Medium with Softening and Variable Elastic Properties]. Vestnik Samarskogo gosudarstvennogo universiteta : Estestvennonauchnaya seriya [Vestnik of Samara State University : Natural Sciences]. 2007, no. 2 (52), pp. 100—106. (In Russian)
  5. Zuev V.V., Shmeleva A.G. Modelirovanie povedeniya sloistykh zashchitnykh pregrad pri dinamicheskikh nagruzkakh [Modeling of the Behavior for Stratified Protective Barriers at Dynamic Loads]. Promyshlennye ASU i kontrollery [Industrial Automatic Control Systems and Controllers]. 2009, no. 12, pp. 28—30. (In Russian)
  6. Zuev V.V., Shmeleva A.G. Nekotorye aktual’nye zadachi dinamicheskogo nagruzheniya uprugoplasticheskikh sred s uslozhnennymi svoystvami [Some Current Problems of Dynamic Loading for Elasto-Plastic Media with Complicated Properties]. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo [Vestnik of Lobachevsky University of Nizhni Novgorod]. 2011, no. 4 (5), pp. 2189—2191. (In Russian)
  7. Shmeleva A.G. Udarnoe nagruzhenie plasticheskikh sred [Shock Loading of Plastic Media]. LAP Lambert Academic Publishing, 2012, 128 p. (In Russian)
  8. Mata M., Casals O., Alcal J. The Plastic Zone Size in Indentation Experiments: The Analogy with the Expansion of a Spherical Cavity. Int. J. of Solids and Structures. 2006, vol. 43, no. 20, pp. 5994—6013. DOI: http://dx.doi.org/10.1016/j.ijsolstr.2005.07.002.
  9. Khodakov S. Physicochemical Mechanics of Grinding of Solids. Shuili Xuebao/Journal of Hydraulic Engineering. 1998, no. 9, pp. 631—643.
  10. Demêmes D., Dechesne C.J., Venteo S., Gaven F., Raymond J. Development of the Rat Efferent Vestibular System on the Ground and in Microgravity. Developmental Brain Research. 2001, vol. 128, no. 1, pp. 35—44. DOI: http://dx.doi.org/10.1016/S0165-3806(01)00146-8.
  11. Feldgun V.R., Karinski Y.S., Yankelevsky D.Z., Kochetkov A.V. Internal Blast Loading in a Buried Lined Tunnel. Int. J. of Impact Engineering. 2008, vol. 35, no. 3, pp. 172—183. DOI: http://dx.doi.org/10.1016/j.ijimpeng.2007.01.001.
  12. Feldgun V.R., Karinski Y.S., Yankelevsky D.Z., Kochetkov A.V. Blast Response of a Lined Cavity in a Porous Saturated Soil. Int. J. of Impact Engineering. 2008, vol. 35, no. 9, pp. 953—966. DOI: http://dx.doi.org/10.1016/j.ijimpeng.2007.06.010.
  13. Aptukov V.N. Expansion of a Spherical Cavity in a Compressible Elastoplastic Medium. Report 1. Effect on Mechanical Characteristics, Free Surface, and Lamination. Strength of Materials. 1991, vol. 23, no. 12, pp. 1262—1268. DOI: http://dx.doi.org/10.1007/BF00779445.
  14. Anand L., Gu C. Granular Materials: Constitutive Equations and Strain Localization. Journal of the Mechanics and Physics of Solids. 2000, vol. 48, no. 8, pp. 1701—1733. DOI: http://dx.doi.org/10.1016/S0022-5096(99)00066-6.
  15. Zou J.-F., Li L., Zhang J.-H., Peng J.-G., Wu Y.-Z. Unified Elastic Plastic Solution for Cylindrical Cavity Expansion Considering Large Strain and Drainage Condition. Gong Cheng Li Xue/Engineering Mechanics. 2010, vol. 27, no. 6, pp. 1—7.
  16. Frishter L.Yu. Raschetno-eksperimental’nyy metod issledovaniya napryazhenno-deformiruemogo sostoyaniya sostavnykh konstruktsiy v zonakh kontsentratsii napryazheniy [Computational and Experimental Method of Stress-Strain State Investigation of Composite Structures in the Areas of Stress Concentration]. Stroitel’naya mekhanika inzhenernykh konstruktsiy sooruzheniy [Structural Mechanics of Engineering Constructions and Buildings]. 2008, no. 2, pp. 20—27. (In Russian)
  17. Frishter L.Yu., Mozgaleva M.L. Sopostavlenie vozmozhnostey chislennogo i eksperimental’nogo modelirovaniya napryazhenno-deformiruemogo sostoyaniya konstruktsiy s uchetom ikh geometricheskoy nelineynosti [Comparison of Capabilities of Numerical and Experimental Simulation for Stress-Strain State of Structures Subject to their Geometric Nonlinearity]. International Journal for Computational Civil and Structural Engineering. 2010, vol. 6, no. 1—2, pp. 221—222. (In Russian)
  18. Antonov V.I. Nachal’nye napryazheniya v anizotropnom neodnorodnom tsilindre, obrazovannom namotkoy [Initial Stresses in an Anisotropic Nonuniform Cylinder Created by Winding]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 4, vol. 1, pp. 29—33. (In Russian)
  19. Antonov V.I. Metod opredeleniya nachal’nykh napryazheniy v rulone pri nelineynoy zavisimosti mezhdu napryazheniyami i deformatsiyami [Method of Initial Stress Determination in a Roll with Nonlinear Dependence of Stresses and Deformations]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 4, vol. 3, pp. 177—180. (In Russian)
  20. Antonov V.I. Napryazheniya v rulone pri dopolnitel’nom natyazhenii lenty [Stresses inside a Roll in Case of Higher Belt Tension]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 10, pp. 24—29. (In Russian)
  21. Zuev V.V. Opredelyayushchie sootnosheniya i dinamicheskie zadachi dlya uprugoplasticheskikh sred s uslozhnennymi svoystvami [Defining Relations and Dynamic Problems for Elasto-Plastic Media with Complicated Properties]. Moscow, Fizmatlit Publ., 2006, 176 p. (In Russian)

Скачать статью

Bearing capacity of corroded bending reinforced concrete element

Вестник МГСУ 7/2014
  • Larionov Evgeniy Alekseevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Advanced Mathematics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow,129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 51-63

Many Russian and foreign scientists studied in their works bearing capacity of reinforced concrete elements. The principal difference of the presented approaches from the traditional ones is that they lack the necessity of artificial sizing as improbable for simultaneous getting preset limit values of corresponding parameters. In our paper we evaluated the bending moment, giving rise to limit stress strain behavior of corroded reinforced concrete beams with corroded concrete and tensile reinforcement. In order to reduce and simplify calculations we consider single reinforcement and ignore tensile reinforcement resistance, and in order to emphasize the idea of the approach we assume noncorrosiveness. The results of concrete stress strain state analysis are more reliable.

DOI: 10.22227/1997-0935.2014.7.51-63

Библиографический список
  1. Guzeev E.A., Mutin A.A., Basova L.N. Deformativnost' i treshchinostoykost' szhatykh armirovannykh elementov pri dlitel'nom nagruzhenii i deystvii zhidkikh sred [Deformability and Crack Resistance of Compressed Reinforced Elements with Long-Term Loading in Fluids]. Moscow, Stroyizdat Publ., 1984, 34 p.
  2. Komokhov P.P., Latynov V.I., Latynova M.V. Dolgovechnost' betona i zhelezobetona [Longevity of Concrete and Reinforced Concrete]. Ufa, Belaya reka Publ., 1998, 216 p.
  3. Bondarenko V.M. Nekotorye fundamental'nye voprosy razvitiya teorii zhelezobetona [Some Fundamental Questions of Reinforced Concrete Theory Development]. Stroitel'naya mekhanika inzhenernykh konstruktsiy i sooruzheniy [Structural Mechanics of Engineering Constructions and Buildings]. 2010, no. 1, pp. 20—34.
  4. Bondarenko V.M., Larionov E.A., Bashkatova M.E. Otsenka prochnosti izgibaemogo zhelezobetonnogo elementa [Evaluation of Bending Reinforced Element Strength] Izvestiya OrelGTU [News of Orel State Technological University]. 2007, no. 2 (14), pp. 25—28.
  5. Bondarenko V.M., Larionov E.A. Printsip nalozheniya deformatsiy pri strukturnykh povrezhdeniyakh elementov konstruktsiy [Deformation Superposition Frequency in Structural Damages of Construction Elements]. Stroitel'naya mekhanika inzhenernykh konstruktsiy i sooruzheniy [Structural Mechanics of Engineering Structures and Buildings]. 2010, no. 1, pp. 16—22.
  6. Aleksandrov A.B., Travush V.I., Matveev A.B. O raschete sterzhnevykh konstruktsiy na ustoychivost' [Collapse Method of Structural Design for Frame Structures]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2002, no. 3, pp. 16—19.
  7. Uliti V.V. Deformatsionnyy kriteriy pri analize ustoychivosti i prodol'nogo izgiba v usloviyakh fizicheskoy nelineynosti [Deformation Criterion in Rigidity and Buckling Analysis in Physical Nonlinearity]. Stroitel'naya mekhanika i raschet sooruzheniy [Structural Mechanics and Structural Analysis]. 2012, no. 1, pp. 34—39.
  8. Beddar M. Fiber Reinforced Concrete: Past, Present and Future. Beton i zhelezobeton — puti razvitiya: nauchnye trudy 2-y Vserossiyskoy (Mezhdunarodnoy) konferentsii po betonu i zhelezobetonu [Concrete and Reinforced Concrete — Development Path: Scientific Works of the 2nd All-Russian (International) Conference on Concrete and Reinforced Concrete]. Ìoscow, Dipak Publ., 2005, vol. 3, pp. 228—234.
  9. Hillerborg A., Modar M., Peterson P. Analysis of Crack Formation and Crack Grows in Concrete by Means of Fracture Mechanics and Finite Elements. Cem. and Concr. Res. 1976, no. 6, pp. 773—781.
  10. Pekau Î.A., Syamal Ð.Ê. Non-Linear Torsional Coupling in Symmetric Structures. J. Sound and Vibration. 1984, vol. 94, no. l, pp. 1—18.
  11. Kilar V., Fajfar P. Simple Push-Over Analysis of Asymmetric Buildings. Journal of Earthquake Engineering and Structural Dynamics. 1997, no. 26, pp. 233—249. DOI: http://dx.doi.org/10.1002/(SICI)1096-9845(199702)26:2<233::AIDEQE641>3.0.CO;2-A
  12. Tso W.K. Induced Torsional Oscillations in Symmetrical Structures. Journal of Earthquake Engineering and Structural Dynamics. 1975, pp. 337—346. DOI: http://dx.doi.org/10.1002/eqe.4290030404.
  13. Bondarenko V.M., Ivanov A.I., Piskunov A.V. Opredelenie korroziynykh poter' nesushchey sposobnosti szhatykh zhelezobetonnykh elementov pri reshenii po SNiP [Defining Corrosion Damages of Bearing Capacity of Compressed Reinforced Concrete Elements According to Construction Norms and Rules]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2011, no. 5, pp. 26—28.
  14. Bondarenko V.M., Kolchunov V.I., Klyueva N.V. Eshche raz o konstruktivnoy bezopasnosti i zhivuchesti zdaniy [Once Again on Constructive Building Security and Survivability]. RAASN. Vestnik otdeleniya stroitel'nykh nauk. Yubileynyy vypusk [Russian Academy of Architecture and Construction Sciences. Reports of Structural Sciences Department. Anniversary Issue]. 2007, no. 11, pp. 81—86.
  15. Bondarenko V.M. O vliyanii korrozionnykh povrezhdeniy na dissipatsiyu energii pri silovom deformirovanii betona [Corrosive Effect on Energy Dissipation in Force Deformation of Concrete]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2008, no. 6, pp. 24—28.

Cкачать на языке оригинала

Derivative criteria of plasticity anddurability of metal materials

Вестник МГСУ 9/2014
  • Gustov Yuriy Ivanovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Department of Machinery, Machine Elements and Process Metallurgy, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-94-95; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Gustov Dmitriy Yur’evich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Building and Hoisting Machinery, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-53-83; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Voronina Irina Vladimirovna - Moscow State University of Civil Engineering (MGSU) Senior Lecturer, Department of Building and Hoisting Machinery, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 182-16-87; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 39-47

Criteria of plasticity and durability derivative of standard indicators of plasticity (δ, ψ) and durability (σ
0,2, σ
B) are offered. Criteria К
δψ and К
s follow from the equation of relative indicators of durability and plasticity. The purpose of the researches is the establishment of interrelation of derivative criteria with the Page indicator. The values of derivative criteria were defined for steels 50X and 50XH after processing by cold, and also for steels 50G2 and 38HGN after sorbitizing. It was established that the sum of the offered derivative criteria of plasticity and durability С
к considered for the steels is almost equal to unit and corresponds to a square root of relative durability and plasticity criterion C
0,5. Both criteria testify to two-unity opposite processes of deformation and resistance to deformation. By means of the equations for S
к and С it is possible to calculate an indicator of uniform plastic deformation of σ
р and through it to estimate synergetic criteria - true tension and specific energy of deformation and destruction of metal materials. On the basis of the received results the expressions for assessing the uniform and concentrated components of plastic deformation are established. The preference of the dependence of uniform relative lengthening from a cubic root of criterion К
δψ, and also to work of the criteria of relative lengthening and relative durability is given. The advantage of the formulas consists in simplicity and efficiency of calculation, in ensuring necessary accuracy of calculation of the size δ
р for the subsequent calculation of structural and power (synergetic) criteria of reliability of metals.

DOI: 10.22227/1997-0935.2014.9.39-47

Библиографический список
  1. Gustov Yu.I., Allattuf Kh. Issledovanie vzaimosvyazi koeffitsientov plastichnosti i predela tekuchesti staley standartnykh kategoriy prochnosti [Study of Interdependence between Ductility Factors and Yield Limits for Steels of Standard Strength Grades]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 7, pp. 22—26.
  2. Gustov Yu.I., Gustov D.Yu. K razvitiyu nauchnykh osnov stroitel’nogo metallovedeniya [To Development of Scientific Fundamentals of Construction Metallurgical Science]. Doklady X rossiysko-pol’skogo seminara «Teoreticheskie osnovy stroitel’stva». Varshava [Reports of the 10th Russian-Polish Seminar "Theoretical Foundations of Construction"]. Warsaw, Moscow, ASV Publ., 2001, pp. 307—314.
  3. Ivanova V.S., Balankin A.S., Bunin I.Zh., Oksogoev A.A. Sinergetika i fraktaly v materialovedenii [Synergetrics and Fractals in Materials Science]. Moscow, Nauka Publ., 1994, 383 p.
  4. Skudnov V.A. Novye kompleksy razrusheniya sinergetiki dlya otsenki sostoyaniya splavov [New Synergetrics Collapse Complexes for an Assessment of Alloys Condition]. Metalovedenie i metallurgiya. Trudy NGTU imeni R.E. Alekseeva [Metal Science and Metallurgy. Works of Nizhny Novgorod State Technical University n.a. R.E. Alekseev]. N. Novgorod, 2003, vol. 38, pp. 155—159.
  5. Gustov Yu.I., Gustov D.Yu., Voronina I.V. Sinergeticheskie kriterii metallicheskikh materialov [Synergetic Criteria of Metal Materials]. Sbornik dokladov XV Rossiysko-slovatsko-pol’skogo seminara «Teoreticheskie osnovy stroitel›stva». Varshava [Reports of the 15th Russian-Polish Seminar "Theoretical Foundations of Construction"]. Warsaw, Moscow, MGSU Publ., 2006, pp. 179—184.
  6. Il’in L.N. Osnovy ucheniya o plasticheskoy deformatsii [Doctrine Bases on Plastic Deformation]. Moscow, Mashinostroenie Publ.,1980, 150 p.
  7. Fridman Ya.B. Mekhanicheskie svoystva metallov. Ch. 2 Mekhanicheskie ispytaniya. Konstruktsionnaya prochnost’ [Mechanical Properties of Metals. Part 2. Mechanical Tests. Constructional Strength]. Moscow, Mashinostroenie Publ., 1974, 368 p.
  8. Goritskiy V.M., Terent’ev V.F. Struktura i ustalostnoe razrushenie metallov [Structure and Fatigue Failure of Metals]. Moscow, Metallurgiya Publ., 1980, 208 p.
  9. Arzamasov B.N., Solov’eva T.V., Gerasimov S.A., Mukhin G.G., Khovava O.M. Spravochnik po konstruktsionnym materialam [Reference Book on Construction Materials]. Moscow, Izd-vo MGTU im. N.E. Baumana Publ., 2005, 640 p.
  10. Larsen B. Formality of Sheet Metal. Sheck Metal Ind. 1977, vol. 54, no. 10, pp. 971—977.
  11. Abramov V.V., Djagouri L.V., Rakunov Yu.P. Kinetics and Mechanism of Contact Interaction with the Deformation and Thermal Deformation Effects on Crystalline Inorganic Materials. Materials of the 1st International Scientific Conference "Global Science and Innovation" (Chicago, USA, December 17—18th, 2013). Chicago, USA, 2013, vol. 2, pp. 360—371.
  12. Abramov V.V., Djagouri L.V., Rakunov Yu.P. Growth Kinetics of Strength (Setting) between Dissimilar Crystalline Materials with Dramatically Different Resistances to Plastic Deformation and Natures of Chemical Bonds. Materials of the 1st International Scientific Ñonference «Global Science and Innovation» (Chicago, USA, December 17—18th, 2013). Chicago, USA, 2013, vol. 2, pp. 372—380.
  13. Callister W.D., Rethwisch D.G. Fundamentals of Materials Science and Engineering. An Integrated Approach. John Wiley Sons, Ins., 2008, 896 p.
  14. Sansalone M., Jaeger B. Applications of the Impact-Echo Method for Detecting Flaws in Highway Bridges. Structural Materials Technology. An NTD Conference, San Diego, California, 1996, pp. 204—210.
  15. Tylkin M.A. Prochnost’ i iznosostoykost’ detaley metallurgicheskogo oborudovaniya [Strength and Wear Resistance of Details of the Metallurgical Equipment]. Moscow, Metallurgiya Publ., 1965, 347 p.

Cкачать на языке оригинала

Featuresof the stress-and-strain state of outer walls under the influence of variable temperatures

Вестник МГСУ 10/2013
  • Kremnev Vasiliy Anatol'evich - LLC "InformAviaKoM" Director General, LLC "InformAviaKoM", 2 Pionerskaya str., Korolev, Moscow Region, 141074, Russian Federation; +7 (495) 645-20-62; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Kuznetsov Vitaliy Sergeevich - Mytishchi Branch, Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Architectural and Construction Design, Mytishchi Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospect, Mytishchi, Moscow Region, 141006, Russian Federation; +7 (495) 583-07-65; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Talyzova Yuliya Aleksandrovna - Moscow State University of Civil Engineering (MGSU) Assistant, Department of Architectural and Structural Design, Mytishchi Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospect, Mytishchi, Moscow Region, 141006, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 52-59

The authors draw attention to possible problems in the process of construction and operation of monolithic frame buildings, construction of which is now widespread. It is known that cracks can often appear in the facade and side walls. The size of the cracks can exceed the allowable limits and repair does not lead to their complete elimination. Also cracks significantly mar the appearance of a building. Thus, the relevance of this study lies not only in fuller understanding of the operation of walls, but also in the ability to prevent undesirable effects.The authors calculated temperature effects for boundary walls of the building blocks made of heavy concrete. The original dimensions of the walls conformed to a grid of columns for the majority of residential and public buildings.The stress-and-strain state of the walls in case of temperature changes is observed in detail, including the transition from sub-zero to above-zero temperatures within the same section (wall). It was revealed that the temperature variations within the established limits may cause stress-and-strain state in the walls, in which the temperature tensile stresses can exceed the tensile strength of materials. The article contains effective means of reducing thermal strains, which can prevent temperature and shrinkage cracking.

DOI: 10.22227/1997-0935.2013.10.52-59

Библиографический список
  1. Krivoshein A.D., Fedorov S.V. K voprosu o raschete privedennogo soprotivleniya teploperedache ograzhdayushchikh konstruktsiy [On the Problem of Calculating the Reduced Thermal Resistance of Building Envelopes]. Inzhenerno-stroitel'nyy zhurnal [Magazine of Civil Engineering]. 2010, no. 8. Available at: http://www.engstroy.spb.ru Date of access: 5.12.12.
  2. Derkach V.N., Orlovich R.B. Voprosy kachestva i dolgovechnosti oblitsovki sloistykh kamennykh sten [Issues of Quality and Durability of the Lining of Layered Stone Walls]. Inzhenerno-stroitel'nyy zhurnal [Magazine of Civil Engineering]. 2011, no. 2. Available at: http://www.engstroy.spb.ru Date of access: 5.12.12.
  3. Soon-Ching Ng, Kaw-Sai Low, Ngee-Heng Tioh. Newspaper Sandwiched Aerated Lightweight Concrete Wall Panels — Thermal inertia, transient thermal behavior and surface temperature prediction. Energy and Buildings. 2011, vol. 43, no. 7, pp. 1636—1645.
  4. Sami A. Al-Sanea, Zedan M.F. Effect of Thermal Bridges on Transmission Loads and Thermal Resistance of Building Walls under Dynamic Conditions. Applied Energy. 2012, vol. 98, pp. 584—593.
  5. Chengbin Zhang, Yongping Chen, Liangyu Wu, Mingheng Shi. Thermal Response of Brick Wall Filled with Phase Change Materials (PCM) under Fluctuating Outdoor Temperatures. Energy and Buildings. 2011. vol. 43, no. 12, pp. 3514—3520.
  6. Pinsker V.A., Vylegzhanin V.P. Teplofizicheskie ispytaniya fragmenta kladki steny iz gazobetonnykh blokov marki po plotnosti D400 [Thermophysical Test of a Segment of Masonry Walls Made of Aerated Concrete Blocks Mark with the Density D400]. Inzhenernostroitel'nyy zhurnal [Magazine of Civil Engineering]. 2009, no. 8. Available at: http://www.engstroy.spb.ru Date of access: 10.07.13.
  7. Knat'ko M.V., Gorshkov A.S., Rymkevich P.P. Laboratornye i naturnye issledovaniya dolgovechnosti (ekspluatatsionnogo sroka sluzhby) stenovoy konstruktsii iz avtoklavnogo gazobetona s oblitsovochnym sloem iz silikatnogo kirpicha [Laboratory and Field Studies of Durability (Operating Life) of a Wall Structure Made of Autoclave Aerated Concrete with Facing Layer made of Sand-lime Brick]. Inzhenerno-stroitel'nyy zhurnal [Magazine of Civil Engineering]. 2009, no. 8. Available at: http://www.engstroy.spb.ru Date of access: 10.07.13.
  8. Ogorodnik V.M., Ogorodnik Yu.V. Nekotorye problemy obsledovaniya zdaniy s otdelkoy litsevym kirpichom v Sankt-Peterburge [Some Problems of the Inspection of Buildings having Face Brick Finishing in St. Petersburg]. Inzhenerno-stroitel'nyy zhurnal [Magazine of Civil Engineering]. 2010, no. 7. Available at: http://www.engstroy.spb.ru Date of access: 7.02.12.
  9. Snegirev A.I., Al'khimenko A.I. Vliyanie temperatury zamykaniya pri vozvedenii na napryazheniya v nesushchikh konstruktsiyakh [The Influence of Circuit Temperature on the Stresses in the Process of Construction of Load-bearing Structures]. Inzhenerno-stroitel'nyy zhurnal [Magazine of Civil Engineering]. 2008, no. 2. Available at: http://www.engstroy.spb.ru Date of access: 7.02.12.
  10. Karpilovskiy V.S. SCADOFFICE. Vychislitel'nyy kompleks Scad [SCADOFFICE. Computing System Scad]. Moscow, 2011, pp. 274—283.

Cкачать на языке оригинала

EXPERIMENTAL STUDY OF THE BEARING CAPACITY OF SPATIAL METAL FRAMES

Вестник МГСУ 5/2012
  • Serpik Igor' Naftol'evich - Bryansk State Technological Academy of Engineering Doctor of Technical Sciences, Professor, Chair, Department of Mechanics, Bryansk State Technological Academy of Engineering, 3 Stanke Dimitrov Prospect, Bryansk, 241037, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Alekseytsev Anatoliy Viktorovich - Bryansk State Technological University of Engineering (BSTU) Candidate of Technical Sciences, Associate Professor, Department of Construction Operations, Bryansk State Technological University of Engineering (BSTU), 3 prospekt Stanke Dimitrova, Bryansk, 241037, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 40 - 44

In the article, the authors describe the principal findings of the experimental study of destruction of spatial frames made of closed-profile steel rods. Six samples of frames were tested through the application of a kinematic loading scheme. Values of forces, displacements and deformations were measured over the time. Each sample was brought to the state when the load reached its maximal value. Thereafter, the load intensity was reduced to 0.6...0.7 of its maximal value. It was identified that the destruction of rods in the event of combined stress was similar to the formation of plastic hinges in the course of regular bending. In some cases, cracks were formed in the zones of plastic hinges. This process did not cause complete destruction of frames.
Destruction-related conditions were also assessed by the quasi-rigidity method implemented in STARK ES 2009 software package. The input data were used to perform failure, bending and torsion tests of steel pipes. The experiments and calculations have proven that in this case the process of destruction can be considered in accordance with the limit equilibrium method by taking account of formation of spatial plastic hinges. The quasi-rigidity method can be employed to identify the maximal load that the frames can bear.

DOI: 10.22227/1997-0935.2012.5.40 - 44

Библиографический список
  1. János L. Optimal Limit Design of Elasto-Plastic Structures for Time-Dependent Loading. Structural Multidisciplinary Optimization. 2007, vol. 33, pp. 269—273.
  2. Bower A.F. Applied Mechanics of Solids. New York, CRC Press, 2009, 794 р.
  3. Tin-Loi F. Plastic Limit Analysis of Flat Frames and Grids Using GAMS. Computers and Structures. 1995, vol. 54, pp. 15—25.
  4. Rutman Yu.L., Semenov V.A., Lebedev V.L. Primenenie metoda psevdozhestkostey dlya analiza predel’nykh sostoyaniy konstruktsiy [Application of the Method of Pseudo-stiffness in the Analysis of Limit States of Structures]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural Mechanics and Analysis of Structures]. 2007, no. 6, pp. 68—72.
  5. Serpik I.N., Alekseytsev A.V. Raschet prostranstvennykh sterzhnevykh sistem metodom predel’nogo ravnovesiya [Calculation of Spacial Rod Systems by the Limit Equilibrium Method]. Matematicheskoe modelirovanie v mekhanike deformiruemykh tel i konstruktsiy. Metody granichnykh i konechnykh elementov. [Mathematical Modeling in Mechanics of Solids and Structures. Methods of Boundary and Finite Elements]. Proceedings of the 27th International Conference. St.Petersburg, SPBGASU [St.Petersburg State University of Architecture and Civil Engineering]. 2011, pp. 104.
  6. Serpik I.N., Alekseytsev A.V., Gusakov A.N. Ustanovka dlya ispytaniy na izgib s krucheniem sterzhnevykh obraztsov. [Stand for Bending and Torsion Testing of Sample Rods]. Pat. 2406992, RF, MPK G01N 3/20 Bull. no. 35 of 20.12.2010, 4 p.
  7. Serpik I.N., Alekseytsev A.V., Gusakov A.N. Eksperimental’no-teoreticheskie issledovaniya protsessa obrazovaniya plasticheskikh sharnirov v sterzhnyakh korobchatogo secheniya pri slozhnom soprotivlenii [Experimental and Theoretical Study of the Process of Formation of Plastic Hinges in Box Section Rods in the event of Combined Stress]. Traditsii i innovatsii v stroitel’stve [Traditions and Innovations in construction]. Proceedings of the 67th All-Russian Scientific and Technical Conference. Samara, SGASU [Samara State University of Architecture and Civil Engineering]. 2010, pp. 131—133.

Cкачать на языке оригинала

INFLUENCE OF CORROSION ON ENERGY DISSIPATION UNDER DEFORMATION

Вестник МГСУ 9/2016
  • Larionov Evgeniy Alekseevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Advanced Mathematics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow,129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 26-34

Corrosive actions generate degradation of the bearing capacity of reinforced concrete elements of buildings and structures during their operation. Chemical corrosion occupies significant place among this actions. As a result of chemical reactions we evidence the change of mechanical characteristics of concrete and steel. In this paper the investigation of the problem is based on rheological equation of concrete state. In case of one-side contact of concrete with the environment layerwise chemical corrosive damages were educes. The author estimated the influence rate of chemical corrosive damages of concrete on its resistance. The dissipation of energy in compressed zone of corrosive-damaged beam is estimated. This estimation is related to the logarithmic decrement of damping under corrosional damages. The author considers. In the process of resistance of a structural element with a degrading module of total deformations equilibrium is only possible in case of increasing deformations and flexures. Account for this fact is important in the estimation of bearing capacity with the help of deformation criteria.

DOI: 10.22227/1997-0935.2016.9.26-34

Cкачать на языке оригинала

RESEARCH OF SYNERGETIC RELIABILITY OF PEARLITE-REDUCED STRUCTURAL STEEL 09G2FB

Вестник МГСУ 7/2012
  • Gustov Yuriy Ivanovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Profes- sor, Department of Machinery, Machine Elements and Process Metallurgy; +7 (499) 183-94-95, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Rus- sian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Voronina Irina Vladimirovna - Moscow State University of Civil Engineering (MGSU) Senior Lecturer, Department of Building and Hoisting Machinery, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 182-16-87; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Allattouf Hassan Lattouf - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Mechanic Equip- ment, Details of Machines and Technology of Metals, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 159 - 162

The primary objective of the research is the synergetic reliability of perlite-reduced structural steel 09G2FB exposed to various thermal and mechanical treatments. In the aftermath of the above exposure, the steel in question has proved to assume a set of strength-related and plastic mechanical properties (σσδ and ψ).
On the basis of the above, an equation is formed\[{{{\sigma }_{\Tau }}}/{{{\sigma }_{\Beta }}+{\delta }/{\Psi }\;=}\;={{\left[ {\left( 1+{{\delta }_{}} \right)}/{\left( 1+{{\delta }_{\Rho }} \right)}\; \right]}^{{1}/{\Psi }\;}},\] and its solution in respect of the uniform component ${{\delta }_{\text{P}}}$ is used to generate the expression \[{{\delta }_{\Rho }}={{\left[ {\left( 1+\delta \right)}/{{{}^{\Psi }}}\; \right]}^{0,5}}-1\]and, hence \[{{\Psi }_{\Rho }}={{{\delta }_{\Rho }}}/{\left( 1+{{\delta }_{\Rho }} \right)}\;.\] To use the synergy criteria, the following expression is applied: \[{{S}_{\Beta }}={{{\sigma }_{\Beta }}}/{\left( 1-{{\Psi }_{\Rho }} \right)}\;,{{S}_{\operatorname{K}}}={{\sigma }_{\Beta }}\left[ {1+\Psi }/{\left( 1-{{\Psi }_{\Rho }} \right)}\; \right],\] as well as the following expression of specific uniform and a specific limit energy :
\[{{W}_{\Rho }}=0,5\left( {{\sigma }_{\Tau }}+{{S}_{B}} \right)\ln \left[ {1}/{\left( 1-{{\Psi }_{\Rho }} \right)}\; \right],{{W}_{C}}=0,5\left( {{\sigma }_{\Tau }}+{{S}_{K}} \right)\ln \left[ {1}/{\left( 1-\Psi \right)}\; \right].\]
\[{{K}_{}}={{{W}_{C}}}/{{{S}_{T}}}\;,G={{{W}_{}}}/{{{W}_{C}},}\;{{K}_{a}}={{{W}_{C}}}/{{{A}_{C}}}\;,\]where static viscosity is calculated according to:\[{{}_{}}=0,5\left( {{S}_{\operatorname{K}}}-{{\sigma }_{\Tau }} \right)\ln \left[ {1}/{\left( 1-\Psi \right)}\; \right].\]
The secondary objective of the project is the identification of the steel brittleness threshold to assure controlled rolling and application of the above steel in construction.

DOI: 10.22227/1997-0935.2012.7.159 - 162

Библиографический список
  1. Bol’shakov V.I. Substrukturnoe uprochnenie konstruktsionnykh staley [Substructural Strengthening of Structural Steels], a monograph. Canada, 1998, 316 p.
  2. Gustov Yu.I., Gustov D.Yu., Voronina I.V. Sinergeticheskie kriterii metallicheskikh materialov [Synergetic Criteria of Metal Materials]. Collected works of the 15th Russian-Slovak-Polish Seminar. Theoretical Fundamentals of Civil Engineering. Warsaw, 2006, pp. 179—184.
  3. Mozberg R.K. Materialovedenie [Material Engineering]. Valgus Publ., Tallinn, 1976, p. 554.

Cкачать на языке оригинала

Principles of classification of soilmasses for construction purposes

Вестник МГСУ 9/2013
  • Chernyshev Sergey Nikolaevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Geologo-Mineralogical Sciences, Professor, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 41-46

The author proposes original grounds for the classification of the full range of soil masses as a supplement to the classification of soils provided in GOST 25100—2011. The author proposes four classes of soil masses, each class having several types and sub-types of soils. The classification will improve the accuracy of engineering and geological surveys and computer models of the geological environment developed for the purpose of design of buildings and structures. The author offers a classification of soils to identify the geological environment comprising one or more types of soil which are genetically and structurally distinct. Any soil mass type differs by its origin, and, as a consequence, its internal geological structure, stress-strain state and inherent geological processes. Any genetically isolated type of soils a specific program of research, both in terms of methods and in terms of density testing in the point of sampling. The behavior of rock masses together with the engineering structure is pre-determined by the properties of the rock, its relative position (geological structure), a network of cracks and other weakening factors, and the natural state of stress. The fracture network is of paramount importance. Cracks are characterized by direction, length, width, surface roughness of walls, and a distance between parallel cracks.

DOI: 10.22227/1997-0935.2013.9.41-46

Библиографический список
  1. Pashkin E.M., Kagan A.A., Krivonogova N.F.; Pashkina E.M., editor. Terminologicheskiy spravochnik po inzhenernoy geologii [Reference Book of Terms of Engineering Geology]. Moscow, KDU Publ., 2011, 952 p.
  2. Panyukov P.N. Inzhenernaya geologiya [Engineering Geology]. Moscow, Gosgortekhizdat Publ., 1962.
  3. Bondarik G.K. Teoriya geologicheskogo polya [Geological Field Theory]. Moscow, MIMS Publ., 2002, 129 p.
  4. Belyi L.D. Obshie principial'nye polozheniya [General Principal Provisions]. In the book: Geologiya i plotiny [Geology and Dams]. Moscow — Leningrad, Gosenergoizdat Publ., 1959, pp. 9—19.
  5. Muller L. Der Felsbau. Ferdinand Enke Verlag. Stuttgart, 1963, 453 p.
  6. Bauduin C.M. Determination of Characteristic Values. In: U. Smoltczyk, editor, Geotechnical Engineering Handbook. Berlin, Ernst Publ., 2002, vol. I, pp. 17—50.
  7. Frank R., Kovarik J.B. Comparasion des niveaux de modele pour la resistance ultime des pieux sous charges axiales. Revue Francaise de Geotechnique. 2005, 110, pp. 12—25.
  8. Belyi L.D. Osnovy teorii inzhenerno-geologicheskogo kartirovaniya [Fundamentals of the Theory of Engineering Geological Mapping]. Moscow, Nauka Publ., 1964.

Cкачать на языке оригинала

Determining craneways deformations caused by static loads

Вестник МГСУ 4/2015
  • Simonyan Vladimir Viktorovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Engineering Geodesy, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-24-92; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Kuznetsov Oleg Fedorovich - Orenburg State University (OSU) Associate Professor, Department of City Cadastre, Honorable Geodetic Engineer of the RF, Orenburg State University (OSU), 13 prospekt Pobedy, Orenburg, 460018, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 90-95

The most typical types of crane substructures destruction are wear of crane rails, details of its fixation, deformation of crane beams, settlement or tilting of the columns. At technical examination of buildings and structures with crane rails their planned-high-altitude position is determined. There exist a list of methods for determining the crane rails’ planned-high-altitude position, each of them has its disadvantage, expressed in the final result - the real position of crane rails. While estimating their position from the ground, i.e. mounting transit on the ground, and indicating devices above, there is an inaccuracy on the rails, which is caused by different moments of indications fixation, both on the plan and hightwise. The authors carried out observations of the position of craneways both on the plan and heightwise for determining the reason of craneways bearing structures’ deformations and the period of their influence of railtrack state. The results of these observations are analyzed and presented. The authors present their suggestions on advancing the crane operation, which will increase its operation life.

DOI: 10.22227/1997-0935.2015.4.90-95

Библиографический список
  1. Shekhovtsov G.A., Il’in B.A. Ob otsenke tochnosti opredeleniya krena vysokikh sooruzheniy [On Accuracy Evaluation of Tilting of High Structures]. Promyshlennoe stroitel’stvo [Industrial Engineering]. 1983, no. 2, pp. 27–—28. (In Russian)
  2. Shekhovtsov G.A., Kochetov F.G. Iz opyta kontrolya polozheniya rel’sov podkranovykh putey [From the Experience of Crane Rails Position Control]. Promyshlennoe stroitel’stvo [Industrial Engineering]. 1989, no. 10, pp. 18—22. (In Russian)
  3. Meixner Heinz. Geodezujne pomiaru deformacji. Prz. gorn. 1980, vol. 36, no. 11, pp. 540—544. LXII, LXIII, LXIV, LXV.
  4. Shekhovtsov G.A., Shekhovtsova R.P. Sovremennye geodezicheskie metody opredeleniya deformatsiy inzhenernykh sooruzheniy : monografiya [Modern Geodesic Methods for Estimating Deformations of Engineering Structures : Monograph]. N. Novgorod, NNGASU Publ., 2009, 156 p. (In Russian)
  5. Shekhovtsov G.A. Otsenka tochnosti polozheniya geodezicheskikh punktov [Position Accuracy Estimation of Geodetic Points]. Moscow, Nedra Publ., 1992, 255 p. (In Russian)
  6. Shekhovtsov G.A. Sovremennye metody geodezicheskogo kontrolya khodovoy chasti i putey mostovykh kranov [Contemporary Methods of Geodetic Control of the Carrier and Rails of Travelling Cranes]. N. Novgorod, NNGASU Publ., 1999, 164 p. (In Russian)
  7. Shekhovtsov G.A., Shekhovtsova R.P. Ob odnovremennom distantsionnom opredelenii geometrii kranovogo puti i traektorii dvizheniya mostovogo krana [On the Simultaneous Distant Estimation of Crane Track Geometry and Motion Path of Travelling Crane]. Mezhvuzovskiy nauchno-metodickeskiy sbornik [Interuniversity Sciemtific and Methodological Collection]. Saratov, SGTU Publ., 2007, pp. 202—206. (In Russian)
  8. RD 10-138—97. Kompleksnoe obsledovanie kranovykh putey gruzopod”emnykh mashin. Chast’ 1. Obshchie polozheniya. Metodicheskie ukazaniya [Directive Document RD 10-138—97. Complex Inspection of Crane Rails of Lifting Machines. Part 1. General Provisions. Methodology Instructions]. Moscow, Gosgortekhnadzor Rossii Publ., 1997, 38 p. (In Russian)
  9. Shekhovtsov G.A., Shekhovtsova R.P., Akritskaya I.I. Varianty ispol’zovaniya lazernoy ruletki pri ekspertize zdaniy i sooruzheniy [Laser Tape Measure Application Variants at Investigating Buildings and Structures]. Promyshlennaya bezopasnost’ — 2007 : sbornik statey [Industrial Safety — 2007. Collection of Articles]. N. Novgorod, NNGASU Publ., 2007, pp. 52—58. (In Russian)
  10. Monich V.Yu. Metod sputnikovoy geodezii dlya opredeleniya razmera kolei napravlyayushchikh kranovogo puti [Satellite Geodesy Method for Determining the Track Size of the Crane Track Direction]. Bezopasnost’ truda v promyshlennosti [Safety of Work in the Industry]. 2001, no. 1, pp. 46—48. (In Russian)
  11. Fedorov A.I. Metodika i predraschet tochnosti izmereniy pri profilirovanii podkranovykh rel’sovykh putey stantsiey «Profil’ PRP» [Methods and Presettlement of Estimation Accuracy at Profiling Crane Railways by the Station “Profil’ PRP“]. Marksheyderiya i nedropol’zovanie [Mining Geodesy and Subsurface Management]. 2003, no. 4, pp. 57—58. (In Russian)
  12. Shekhovtsov G.A., Kochetov F.G. Iz opyta kontrolya polozheniya rel’sov podkranovykh putey [From the Experience of Crane Rail Position Control]. Promyshlennoe stroitel’stvo [Industrial Engineering]. 1989, no. 10, pp. 18—22. (In Russian)
  13. Arnold R. Eine neue Technologie fur Kranbahn-kontrollmessungen. Vermessungstechnik. 1989, vol. 37, no. 2, pp. 52—55.
  14. Janusz W. Wyznaczanie trajektorii ruhu suwnicy i odchytek toru podsuwnicowego ze stanowisk naziemnych. Pr. Jnst. Geod. i kartogr. 1994, vol. 41, no. 89, pp. 31—45.
  15. Shekhovtsov G.A., Shekhovtsova R.P. Peredacha otmetok s ispol’zovaniem lazernoy ruletki [Marks Delivery Using Laser Tape Measure]. Promyshlennaya bezopasnost’ — 2007 : sbornik statey [Industrial Safety — 2007. Collection of Articles]. N. Novgorod, NNGASU Publ., 2007, pp. 59—63. (In Russian)
  16. Soustin V.N. Peredacha otmetok bezotrazhatel’nym dal’nomerom i nivelirom [Marks Delivery by Reflectorless Distance Meter and Level]. Geodeziya i kartografiya [Geodesy and Mapping]. 2001, no. 5, pp. 15—18. (In Russian)
  17. Bryś Henryk. Meßverfahren zum Bestimmen der Geometrie der Verformung von Brückenkran und Kranbahnschienen. Allg. Vermess.-Nachr. 2000, vol. 107, no. 11—12, pp. 391—396.
  18. Schaefer W. Photogrammetrische Beobachtung von Bauwerksverform ungen. Markscheidewesen. 1985, vol. 92, no. 4, pp. 148—151.
  19. Schwarz Wilfried. Moderne Messverfahren in der Ingenieurgeodäsie und ihr praktischer Einsatz. Flachenmanag. Und Bodenordn. 2002, vol. 64, no. 2, pp. 87—97.
  20. Kuznetsov O.F. Geodezicheskoe obespechenie stroitel’stva i ekspluatatsii sooruzheniy [Geodetic Support of the Construction and Operation of Structures]. Orenburg, Ekspress-pechat’ Publ., 2008, 201 p. (In Russian)

Скачать статью

EFINITION OF DEFORMATION OF FINE-GRAINED CONCRETE ON THE BASIS OF SULPHATE-RESISTANT PORTLAND CEMENT

Вестник МГСУ 12/2018 Том 13
  • Ngo Xuan Hung - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student of Department of Technology of Binders and Concretes, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Tang Van Lam - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student of Department of Technology of Binders and Concretes, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Bulgakov Boris I. - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Associate Professor, Associate Professor of Department of Technology of Binders and Concretes, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Aleksandrova Olga V. - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Associate Professor, Associate Professor of Department of Technology of Binders and Concretes, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Larsen Oksana A. - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Associate Professor, Associate Professor of Department of Technology of Binders and Concretes, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Страницы 1499-1508

Introduction. The possibility of determining the relative deformations of fine-grained concretes based on sulfate-resistant cement was formulated by testing samples of gypsum-cement-sand mixture in distilled water in accordance with the requirements of the Vietnamese standard TCVN 6068:2004. Objective - to determine the deformations of fine-grained concrete because of sulfate-resistant Portland cement in accordance with the requirements of the TCVN 6068:2004 standard to assess its resistance to corrosion in an aggressive sulfate medium. Materials and methods. To obtain a gypsum-cement-sand mixture, a finely disintegrating binder was used, consisting of sulfate-resistant Portland cement of the type CEM I CC 42.5 N produced by the “Tam Diep” plant with the addition of natural gypsum produced by the company “Dinh Vu”. Quartz sand was used as fine aggregate. All raw materials used were native to Vietnam. Grinding fineness, normal cement density, setting time, the uniformity of the volume change and the activity of sulfate-resistant Portland cement were determined according to GOST 30744-2001; deformations of samples from gypsum-cement-sand mixtures - according to the Vietnamese standard TCVN 6068:2004. Results. Investigated the relative increase in the volume of samples of gypsum-cement-sand mixture based on sulfate-resistant Portland cement and natural gypsum as a result of their testing in distilled water according to the standard TCVN 6068:2004. Conclusions. Found that the average value of the relative deformation of the prism samples of concrete as a result of a 14-day test in distilled water was 0.037 %, which is within the acceptable value of 0.04 % in accordance with the requirements of the Vietnamese standard TCVN 6067:2004. Therefore, sulfate-resistant Portland cement type CEM I CC 42.5 N produced by the “Tam Diep” plant is a promising material as a binder for the preparation of corrosion-resistant concrete. The increase in the mean values of the relative deformations of the gypsum-cement-sand prism specimens after the 28-day and 60-day of testing, compared to the results of the 14-day test, can be explained by a slightly increased content of tricalcium aluminate in the studied cement.

DOI: 10.22227/1997-0935.2018.12.1499-1508

Cкачать на языке оригинала

Результаты 1 - 10 из 10