DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

INVESTIGATION OF RANDOM WIND LOAD IMPACTS ON THE FRAMEWORK OF A SINGLE STOREY INDUSTRIAL BUILDING

Вестник МГСУ 9/2016
  • Zolina Tat’yana Vladimirovna - State Autonomous Educational Institution of the Astrakhan area of higher education "Astrakhan State Architectural and Construction University" (JSC GAOU VPO "AGASU") Candidate of Technical Sciences, Professor, First Vice-rector, State Autonomous Educational Institution of the Astrakhan area of higher education "Astrakhan State Architectural and Construction University" (JSC GAOU VPO "AGASU"), 18 Tatishcheva str., Astrakhan, 414000, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Sadchikov Pavel Nikolaevich - State Autonomous Educational Institution of the Astrakhan area of higher education "Astrakhan State Architectural and Construction University" (JSC GAOU VPO "AGASU") Candidate of Technical Sciences, Associate Professor, Department of Automated Design and Modeling Systems, State Autonomous Educational Institution of the Astrakhan area of higher education "Astrakhan State Architectural and Construction University" (JSC GAOU VPO "AGASU"), 18 Tatishcheva str., Astrakhan, 414000, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 15-25

Geometrical characteristics of obstacles on the ground, which determine the roughness of the terrain, cause the air flow turbulence. The friction level of air flow on the surface depends on the height and density of the location of obstacles, which determines the magnitude and direction of the load on a corresponding specific object. Any obstacle located in the way of the turbulent flow experiences a corresponding wind load. In the given study we have considered a multi-span one-storey industrial building as an obstacle. In order to estimate the load on the object of study caused by the wind, we decomposed the corresponding load into two components: middle and fluctuating. The first one shows the static wind load characteristics estimated according to the territorial division into districts of the Russian Federation, where the areas of calculated values of wind pressure are exhibited. Their distribution is the result of the implementation of the probabilistic model presented in the form of non-stationary random field of wind flow speeds. In order to obtain calculated values and automated processing of the value of wind load on the surface of an industrial building under blow the profiles of wind flow velocities at different heights were approximated. The resulting functional dependency on the heights is of a distinct power character. In order to describe the dynamic parameters of the process, presented in the form of the fluctuating component of wind load and the resulting reactions of structural elements of the building, we considered the random functions according to the time parameter. They represent the energy spectrum of the proportion of the wind flow power, attributable to an infinitesimal frequency band. The set of reciprocal spectral densities when selecting the points in space, each of which determines the correlation degree between the states of a random process, has allowed establishing the magnitude of the correlation coefficient of wind pressure pulsations to the entire surface of the building. When studying wind load impact on the operation of an industrial building framework, the corresponding response elements of the system are defined separately from the effects of the average and the sum of pulsation components. The combined effect which corresponds to the most unfavorable load value is achieved in case of coincidence of their signs. The present approach to the assessment of the forces caused by wind and the response to them on the part of the object became the basis of the calculation methodology as one of the components of the generalized load on the object of study.

DOI: 10.22227/1997-0935.2016.9.15-25

Cкачать на языке оригинала

DEVELOPMENT OF AN EXPERIMENTAL TEST BED DESIGNATED FOR MODEL STUDIES OF AERODYNAMICS OF PREMISES USING METHOD OF DIGITAL FLOW VISUALIZATION

Вестник МГСУ 12/2012
  • Varapaev Vladimir Nikolaevich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Department of Applied Mathematics, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Doroshenko Sergey Aleksandrovich - Moscow State University of Civil Engineering (MSUCE) postgraduate student, Department of Theoretical Mechanics and Aerodynamics, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Kapustin Sergey Aleksandrovich - Moscow State University of Civil Engineering (MGSU) engineer, laboratory of aerodynamic and aero-acoustic testing of structural units, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Orekhov Genrikh Vasil'evich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Chair, Department of Hydropower Engineering and Water Resources Management, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Churin Pavel Sergeevich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Hydropower Engineering and Water Resources Management, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 117 - 124

In the article, the authors present their findings generated at the laboratory of aerodynamic and aero-acoustic testing of structural units of MGSU. The authors provide information about the principle of operation and a brief description of the experimental test bed designated for the physical research of patterns of air flows arising inside building premises of various geometric shapes. The authors also demonstrate the basic parameters of the test bed, the principle of operation of its recording devices and some of its characteristics.
The test bed is designated for the identification of characteristics of three-dimensional flows of models under research and for the verification of results of numerical studies. The measurement bed has advanced measurement and registration units. The management principle is based on the method of digital flow visualization, PIV method and Doppler flow meter implemented in the LDA anemometer. The test stand generates two or three component vector fields of turbulent gas flow velocities. It may be applicable to the study of liquids in case of research of hydraulics-related problems. Some results of the flow study are provided in the article, as well.

DOI: 10.22227/1997-0935.2012.12.117 - 124

Библиографический список
  1. Barton D.K., Ward H. R. Handbook of Radar Measurement. Prentice Hall, 1969, 392 p.
  2. Dubnishchev Yu.N., Rinkevichyus B.S. Metody lazernoy doplerovskoy anemometrii [Methods of Laser Doppler Anemometry]. Moscow, Nauka Publ., 1982, 303 p.
  3. Dubnishchev Yu.N., Arbuzov V.A., Belousov P.P. Opticheskie metody issledovaniya potokov [Optical Methods of Flow Study]. Novosibirsk, NGU Publ., 2003, 418 p.
  4. Adrian R.J., Westerweel J. Particle Image Velocimetry. Cambridge University Press, 2011, p. 547.
  5. Durst F., Melling Am. Whitelaw J. H. Principles and Practice of Laser - Doppler Anemometry. London, UK, Academic Press, 1981, p. 437.
  6. Jakimchuk V.I. LDA-technique for Slow Flows. PARTEC 98. Int. Cong. Part. Tech. 7th Europ. Symp. Part. Charact., Nurnberg, Germany, 10-12 March 1998, Preprint 1, pp. 275—284.
  7. Raffel M., Willert C., Wereley S., Kompenhans, J. Particle Image Velocimetry: a Practical Guide, Springer, 2007, p. 448.
  8. Westerweel, J. Digital Particle Image Velocimetry — Theory and Application. Delft University Press, 1993, p. 236.

Cкачать на языке оригинала

Transformation model of modified Couette vortex along the channel

Вестник МГСУ 7/2014
  • Zuykov Andrey L'vovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Department of Hydraulics and Water Resources, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation; +7 (495)287-49-14, ext. 14-18; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 147-155

The article is a further research of a circular-longitudinal flow created in a cylindrical pipe by a continuous swirler called Couette vortex, which the author started to study in his previous works. The key question is how Couette modified vortex is transformed along the channel (pipe). The author regards variation of azimuthal velocities (
u) and the Heeger-Baer’s swirl number (
Sn) in turbulent irregular circular-longitudinal flow, which is described by the model of modified Couette vortex along the cylindrical channel. It is confirmed that the model of the modified Couette vortex and free-forced Burgers - Batchelor vortex show almost similar results in calculations and both vortex models can be equally used in engineering practice in calculations and the analysis of circulating and longitudinal flow operating modes (vortex flows).

DOI: 10.22227/1997-0935.2014.7.147-155

Библиографический список
  1. Zuykov A.L. Modifitsirovannyy vikhr' Kuetta [Modified Couette Vortex]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 4, pp. 66—71.
  2. Chinh M.T. Turbulence Modeling of Confined Swirling Flows. Roskilde. Riso National Laboratory, 1998, Riso-R-647(EN), ð. 32.
  3. Fernandez-Feria R., Fernandez de la Mora J.,Barrero A. Solution Breakdown in a Family of Self-similar Nearly Inviscid Oxisymmetric Vortices. Journal of Fluid Mechanics. 1995, no. 305, ðð. 77—91.
  4. Delery J.M. Aspects of Vortex Breakdown. Progr. Aerospace Sci. 1994, vol. 30, no. 1, ð. 59. DOI: http://dx.doi.org/10.1016/0376-0421(94)90002-7.
  5. Kitoh O. Experimental Study of Turbulent Swirling Flow in a Straight Pipe. Journal of Fluid Mechanics. 1991, vol. 225, pp. 445—479. DOI: http://dx.doi.org/10.1017/S0022112091002124 (About DOI).
  6. Saburov E.N., Karpov S.V., Ostashev S.I. Teploobmen i aerodinamika zakruchennogo potoka v tsiklonnykh ustroystvakh [Heat Transfer and Aerodynamics of Swirling Flow in Cyclone Devices]. Leningrad, Leningrad State University Publ., 1989, 176 p.
  7. Vatistas G.H., Lin S., Kwok C.K. An Analytical and Experimental Study on the Coresize and Pressure Drop across a Vortex Chamber. AIAA Paper, 17th Fluid Dynamics, Plasma Dynamics, and Lasers Conference. 1984, no. 84—1548, 24 p.
  8. Gupta A.K., Lilley D., Syred N. Swirl Flows. London, Abacus Press, 1984, 475 p. DOI: http://dx.doi.org/10.1016/0010-2180(86)90133-1.
  9. Escudier M., Bornstein J., Zehnder N. Observations and LDA Measurements of Confined Turbulent Vortex Flow. Journal of Fluid Mechanics. 1980, vol. 98, no. 1, ðð. 49—64. DOI: http://dx.doi.org/10.1017/S0022112080000031.
  10. Zuykov A.L. Radial'no-prodol'noe raspredelenie azimutal'nykh skorostey v techenii za lokal'nym zavikhritelem [Radially-longitudinal Distribution of Azimuthal Velocities in the Flow Behind Local Swirler]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 2, pð. 119—123.
  11. Zuykov A.L. Approksimiruyushchie profili tsirkulyatsionnykh kharakteristik zakruchennogo techeniya [Approximating Profiles of the Circulation Characteristics of a Swirling Flow]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 5, pp. 185—190.
  12. Zuykov A.L. Analiz izmeneniya profilya tangentsial'nykh skorostey v techenii za lokal'nym zavikhritelem [Analysis of Changes in the Profile of the Tangential Velocities in the Flow Behind Local Swirler]. Vestnik MGSU [Proceedings of the Moscow State University of Civil Engineering]. 2012, no. 5, pp. 23—28.
  13. Burgers J.M. A Mathematical Model Illustrating Theory of Turbulence. Advances in Applied Mechanics. 1948, no. 1, ðp. 171—199.
  14. Batchelor G.K. An Introduction to Fluid Dynamics. Cambridge University Press. New Ed. 2002, 631 p.
  15. Zuykov A.L. Gidrodinamika tsirkulyatsionnykh techeniy [Hydrodynamics of Circulating Currents]. Moscow. Association of Building Institutions of Higher Education Publ., 2010, 216 p.
  16. Kiselyov P.G., editor. Spravochnik po gidravlicheskim raschetam [Handbook of Hydraulic Calculations]. 4th Edition. Moscow. Energiya Publ., 1972, 312 p.
  17. Zuykov A.L. Kriterii dinamicheskogo podobiya tsirkulyatsionnykh techeniy [Criteria of Dynamic Similarity of Circulating Flow]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 3, ðp. 106—112.

Cкачать на языке оригинала

Effect of velocity fluctuations length on the calculation accuracy of turbulent shearing stresses

Вестник МГСУ 9/2014
  • Volgin Georgiy Valentinovich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Hydraulics and Water Resources, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 93-99

This article focuses on the method of improving shear stresses calculation accuracy based on the experimental data. It was proven that shear stresses value considerably changes (even up to change of sign from positive to negative) depending on different velocity fluctuations amount (or length). Experimental database consists of velocity in turbulent flow at different times. Recommendations for practical use of methods of calculation depending on the type of engineering problems are presented. The method of finding optimal amount of the experimental database is proposed by the analysis of the values convergence of the standard deviations calculated for the whole sample and the standard deviation calculated by increasing interval. The calculation results for these intervals are at the points of the measuring system and the hypothesis about finding the optimal length of implementation is offered. The steps for further research are set out.

DOI: 10.22227/1997-0935.2014.9.93-99

Библиографический список
  1. Ivanov B.N. Mir fizicheskoy gidrodinamiki: Ot problem turbulentnosti do fiziki kosmosa [World of Physical Hydrodynamics: From Turbulence Problems to Space Physics]. Moscow, Editorial URSS Publ., 2002, 239 p.
  2. Loytsyanskiy L.G. O nekotorykh prilozheniyakh metoda podobiya v teorii turbulentnosti [On Some Applications of Similarity Method in Turbulence Theory]. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics]. 1935, vol. 2, no. 2, pp. 180—206.
  3. Tarasov V.K., Volgina L.V., Gusak L.N. Prostranstvennye sostavlyayushchie turbulentnoy vyazkosti [Spatial Components of the Turbulent Viscosity]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2008, no. 1, ðð. 221—224.
  4. Borovkov V.S. Ruslovye protsessy i dinamika rechnykh potokov na urbanizirovannykh territoriyakh [Channel Processes and Dynamics of River Flows in Urbanized Territories]. Leningrad, Gidrometeoizdat Publ., 1989, 286 p.
  5. Volgina L.V. Vliyanie vida korrelyatsionnoy funktsii na metody opredeleniya makrostruktur turbulentnogo potoka [Influence of Correlation Function Type on the Methods of Identifying Macrostructures of Turbulent Flow]. 2 Mezhdunarodnaya (7 traditsionnaya) NTK molodykh uchenykh, aspirantov i doktorantov [2nd International (7th Traditional) Scientific and Technical Conference of Young Researchers, Postgraduates and Doctoral Students]. Moscow, MGSU Publ., 2004, pp. 204—211.
  6. Tarasov V.K., Gusak L.N., Volgina L.V. Dvizhenie dvukhfaznykh sred i gidrotransport [Motion of Biphasic Media and Hydrotransport]. Moscow, MGSU Publ., 2012, 92 p.
  7. Volgina L.V. Izmeneniye masshtaba turbulentnostI i kasatel'nykh napryazheniy treniya pri rezkom izmenenii uklona [Changing the Scale of Turbulence and Shear Stresses in Case of Abrupt Change of Frictions Lope]. Materialy pyatoy NTK molodykh uchenykh, aspirantov i doktorantov [Proceedings of the Fifth Scientific and Technical Conference of Young Researchers, Postgraduates and Doctoral Students]. Moscow, MGSU Publ., 2001, pp. 200—211.
  8. Smol'yakov A.V., Tkachenko V.M. Izmerenie turbulentnykh pul'satsiy [Measurement of Turbulent Fluctuations]. Leningrad, Energiya Publ., 1980, 264 p.
  9. Okulov V.L., Naumov I.V., Sorensen Zh.N. Osobennosti opticheskoy diagnostiki pul'siruyushchikh techeniy [Features of the Optical Diagnostics of Fluctuating Flows]. Zhurnal tekhnicheskoy fiziki [Technical Physics Journal]. 2007, vol. 77, no. 5, pp. 47—57.
  10. Bryanskaya Yu.V., Markova I.M., Ostyakova A.V. Gidravlika vodnykh i vzvesenesushchikh potokov v zhestkikh i deformiruemykh granitsakh [Hydraulics of Water Flows and Suspended Matter Bearing Flows in Rigid and Deformable Borders]. Moscow, ASV Publ., 2009, 264 p.
  11. Taryshkin R.A., Sabrirzyanov A.N., Fafurin V.A., Fefelov V.V., Yavkin V.B. Primeneniye RANS modeley turbulentnosti dlya rascheta raskhoda v raskhodomere so standartnoy diafragmoy [Application of RANS Turbulence Models to Calculate the Flow in the Flow Meter with a Standard Diaphragm]. Vestnik Udmurtskogo universiteta. Mekhanika [Proceedings of Udmurt State University. Mechanics]. 2010, no. 2, pp. 109—115.
  12. Volynov M.A. Vliyaniye planovoy geometrii rechnogo rusla na diffuziyu i dispersiyu primesey [Influence of Planned Geometry of the Riverbed on the Diffusion and Dispersion of Contaminants]. Fundamental'nyye issledovaniya [ Fundamental Research]. 2013, no. 6, part 3, pp. 535—540.
  13. Cellino M., Graf W.H. Sediment-laden Flow in Open-channels under Noncapacity and Capacity Conditions. Journal of hydraulic engineering. 1999, vol. 125, no. 5, pp. 455—462. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(1999)125:5(455).
  14. Lyakhter V.M. Turbulentnost’ v gidrosooruzheniyakh [Turbulence inside Hydraulic Structures]. Moscow, Energiya Publ., 1968, 408 p.
  15. Zapryagayev V.I., Kavun I.N. Eksperimental'noye issledovanie vozvratnogo techeniya v peredney otryvnoy oblasti pri pul'satsionnom rezhime obtekaniya tela s igloy [Experimental Study of the Reverse Flow in the Separation Region in Front of a Pulsating Flow Regime of the Body with a Needle]. Prikladnaya mekhanika i tekhnicheskaya fizika [Applied Mechanics and Technical Physics]. 2007, vol. 48, no. 4, pp. 30—39.

Cкачать на языке оригинала

Areas of use of interacting swirl liquid and gas flows

Вестник МГСУ 7/2015
  • Volshanik Valeriy Valentinovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Professor, Department of Hydroelectric Engineering and Use of Aquatic Resource, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Orekhov Genrikh Vasil’evich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Chair, Department of Hydroelectric Engineering and Use of Aquatic Resources; +7 (499) 182-99-58, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 87-104

Swirled flows of liquid and gas are widely used in modern technology because of many of their unique aerodynamic, thermodynamic, and hydro-mechanical qualities. They are used for spraying liquid fuel mixing and dispersing liquid, aerosol formation, formation of the flame, classification of disperse materials and drying, dehydration, deaeration, cooling and heating, distillation and purification (rectification of working fluids), ash and dust-collecting, generating vapor separation of suspensions, absorption materials, separation materials, excitation of mechanical vibrations and formation of a sound signal, transportation of materials and many other technological purposes. The proposals for the use of interacting (counter vortex) swirling flows were caused by the requirements of the practice of mixing fluids and gases and quenching of excess kinetic energy of the high-speed flow of water in the high-pressure hydro spillways. The method for energy dissipation by reacting flows (jets) I based on the idea of separating the stream into parts and creating the conditions for mutual energy damping of individual parts of during subsequent reunification. As it is known, while moving from the upper pool to the lower one the water flow may dampen its energy performing useful work on the hydraulic turbines or overcoming the reaction forces, which arise when passing through the dampers. The energy of one part of a stream in interaction with the energy of the other part is used for creating the forces equivalent to the jet forces developed by quenchers. Such interaction can give the best effect in the conditions of rational breakdown of a stream and creation of the respective movement directions of its parts in relation to each other. In the cylindrical camera of counter vortex devices coaxial flows are formed consisting of two or more oppositely swirling flows of liquid or gas, the interaction of which can convert practically the whole mechanical energy source of the interacting flows into excess turbulence energy. The nature and intensity of hydro-mechanical, aerodynamic and mechanical processes occurring in the counter vortex devices provide the efficiency of their application in various branches of modern technology for mixing of single-phase and multiphase media, quenching the excess mechanical energy of the flow of liquid and gas, for disintegration of conglomerates, creating a homogeneous systems, excitation of mechanical vibrations and obtaining other effects. Authors due to the nature of their activity paid the main attention to the development, researches and creation of the designs of counter vortex quenchers of spillways energy of high-pressure water-engineering systems and counter vortex aerators of different purpose. Counter vortex devices have been tested for other purposes (homogenizer, flotators), protected by patents or circuit diagram are proposed for them.

DOI: 10.22227/1997-0935.2015.7.87-104

Библиографический список
  1. Volshanik V.V., Zuykov A.L., Eliseev N.A., Konovalov E.S., Krivchenko G.I., Levanov A.V., Mordasov A.P., Pravdivets Yu.P. Rezhimy raboty krupnomasshtabnoy modeli kontrvikhrevogo gasitelya [Modes of Operation of Large-Scale Models of Counter Vortex Damper]. Metody issledovaniy i gidravlicheskikh raschetov vodosbrosnykh gidrotekhnicheskikh sooruzheniy : materialy konferentsii i soveshchaniya po gidrotekhnike [Materials of the Conference and Meeting “Research Methods and Hydraulic Calculations of Intakes of Hydraulic Structures”]. Leningrad, Energoatomizdat Publ., 1985, pp. 154—157. (In Russian)
  2. Volshanik V.V., Zuykov A.L., Mordasov A.P., Krivchenko G.I. Zakruchennye potoki v gidrotekhnicheskikh sooruzheniyakh [Swirl Flows in Hydraulic Structures]. Saint Petersburg, Energoatomizdat Publ., 1990, 280 p. (In Russian)
  3. Volshanik V.V.‚ Mordasov A.P., Zuykov A.L. Proekty ispol’zovaniya zakruchennykh potokov v vysokonapornykh vodosbrosakh [Projects of Use of Swirling Spillway in High-Pressure Outlets]. Gidrotekhnika i melioratsiya [Hydraulic Engineering and Land Reclamation]. 1983, no. 8, pp. 3—7. (In Russian)
  4. Volshanik V.V., Zuykov A.L.‚ Orekhov G.V.‚ Churin P.S. Propusk kholostykh raskhodov cherez turbinnyy blok sredne- ili vysokonapornoy GES. Ch. 1 [Skip of Idling Consumption through the Turbine Unit of a Medium or High Pressure HPS. Part 1]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 2013, no. 4, pp. 51—56. (In Russian)
  5. Zuykov A.P.‚ Volshanik V.V.‚ Mordasov A.P. Primenenie kontrvikhrevykh ustroystv dlya gasheniya energii vysokoskorostnykh potokov vody i aeratsii zhidkostey [Application of Counter Vortex Devices for Energy Dissipation of High-Speed Streams of Water and Aeration of Liquids]. Trudy I nauchnoy konferentsii Politekhnicheskogo instituta [Proceedings of the First Scientific Conference of the Polytechnic Institute]. Brno, Chekhoslovakiya. 1989, vol. 16, pp. 90—94. (In Russian)
  6. Zuykov A.L., Krivchenko G.I., Mordasov A.P. Vysokonapornye vodosbrosnye sistemy s vikhrevymi i kontrvikhrevymi ustroystvami i praktika gidrotekhnicheskogo stroitel’stva [High-pressure Waste Water Systems with Vortex and Counter Vortex Devices and Practice of Hydrotechnical Construction]. Razvitie gidroenergetiki SSSR v XII pyatiletke : trudy Vsesoyuznogo nauchno-tekhnicheskogo soveshchaniya [Proceedings of the All-Union Scientific and Technical Meeting “The Development of Hydropower in the 12th Five-Year Plan of the USSR]. Sayanogorsk, 1988. (In Russian)
  7. Zuykov A.L., Chepaykin G.A. Issledovaniya modeli vysokonapornogo glubinnogo vodosbrosa so vzaimodeystviem kontsentricheskikh zakruchennykh potokov [Studies of High-Pressure Deep Spillway Model in Interaction of Concentric Swirling Flows]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 1986, no. 12, pp. 29—33. (In Russian)
  8. Karelin V.Ya.‚ Krivchenko G.I., Volshanik V.V.‚ Mordasov A.P., Zuykov A.L. Ispol’zovanie zakruchennykh potokov dlya zashchity ot kavitatsii v vysokonapornykh vodosbrosnykh sistemakh [Using Swirl Flows for Cavitation Protection in High-Pressure Intake Systems]. Trudy Mezhdunarodnogo simpoziuma po kavitatsii [Proceedings of the International Symposium on Cavitation]. Sendai, Japan, 1986, pp. 287—291. (In Russian)
  9. Krivchenko G.I., Mordasov A.P., Kvyatkovskaya E.V.‚ Volshanik B.B., Zuykov A.L. Vysokonapornaya vodosbrosnaya sistema s kontrvikhrevym gasitelem energii potoka vody [High-Pressure Wastewater System with a Counter Vortex Quencher of Water Flow Energy]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 1981, no. 10, pp. 29—31. (In Russian)
  10. Krivchenko G.I., Kvyatkovskaya E.V.‚ Mordasov A.P., Volshanik V.V., Zuykov A.L. Vysokonapornye vodosbrosnye sistemy s kontrvikhrevymi gasitelyami energii potoka [High Pressure Water Discharge System with Counter Vortex Absorbers of Flow Energy]. Tezisy dokladov IV nauchno-tekhnicheskogo soveshchaniya Gidroproekta [Abstracts of the 4th Scientific and Technical Meeting of the Hydroproject]. Moscow, 1982, pp. 41—42. (In Russian)
  11. Krivchenko G.I., Kvyatkovskaya E.V., Mordasov A.P., Volshanik V.V.‚ Zuykov A.L. Shakhtnyy vikhrevoy vodosbros s kontrvikhrevym gasitelem dlya vysokonapornykh gidrouzlov [Mine Vortex Spillway With a Countervortex Absorber for High-Pressure Water-Engineering Systems]. Trudy Moskovskogo inzhenerno-stroitel’nogo instituta [Works of the Moscow Construction Institute]. Moscow, MISI Publ., 1983, no. 189, pp. 151—157. (In Russian)
  12. Krivchenko G.I., Mordasov A.P., Kvyatkovskaya E.V., Volshanik B.B., Zuykov A.L.‚ Levanov A.V. Gasiteli energii vysokonapornykh vodosbrosnykh sooruzheniy, osnovannye na vzaimodeystvii soosnykh zakruchennykh potokov [Absorbers of High-Energy Intakes and Facilities Based on the Interaction of Coaxial Swirling Flows]. Trudy XX Kongressa Mezhdunarodnoy assotsiatsii po gidravlicheskim issledovaniyam [Proceedings of the 20th Congress of the International Association for Hydraulic Research]. Moscow, 1983, vol. 7, pp. 464—467. (In Russian)
  13. Slisskiy C.M., Mordasov A.P., Pravdivets Yu.P.‚ Laktionova E.A., Kuznetsova E.V., Naymark L.I. Gidravlicheskie issledovaniya kontrvikhrevogo gasitelya [Hydraulic Studies of Counter Vortex Absorber]. Energeticheskoe stroitel’stvo [Energy Construction]. 1984, no. 10, pp. 47—49. (In Russian)
  14. Krivchenko G.I., Kvyatkovskaya E.V., Volshanik V.V., Zuykov A.L. A. s. na izobretenie SSSR № 812876, MKI E02V8/06. Sposob gasheniya energii potoka [Certificate of authorship of the USSR no. 812876, MKI E02V8/06. Way of Energy Dissipation]. Zayavka № 2754985/29-15 ; zayavl. 20.04.1979 ; opubl. 15.03.1981. Byul. № 10 [Notice no. 2754985/29-15 ; appl. 20.04.1979 ; publ. 15.03.1981. Bulletin no. 10]. Pp. 111—112. (In Russian)
  15. Krivchenko G.I., Kvyatkovskaya E.V., Mordasov A.P., Volshanik V.V., Zuykov A.L. A. s. na izobretenie SSSR № 812877, MKI E02V8/06. Vodosbrosnoe ustroystvo [Certificate of authorship of the USSR no. 812877, MKI E02V8/06. Spillway Device]. Zayavka № 2766983/29-15 ; zayavl. 17.05.1979 ; opubl. 15.03.1981. Byul. № 10 [Notice no. 2766983/29-15 ; appl. 17.05.1979 ; publ. 15.03.1981. Bulletin no. 10, p. 112. (In Russian)
  16. Mordasov A.P., Zhivotovskiy B.A. A. s. na izobretenie SSSR № 819254, MKI E02V8/06. Vodosbrosnoe ustroystvo [Certificate of authorship of the USSR no. 819254, MKI E02V8/06. Spillway Device]. Zayavka № 2783220/29-15 ; zayavl. 20.06.1979 ; opubl. 07.04.1981. Byul. № 13 [Notice no. 2783220/29-15 ; appl. 20.06.1979 ; publ. 07.04.1981. Bulletin no. 13]. P. 119. (In Russian)
  17. Krivchenko G.I., Kuperman V.L., Kvyatkovskaya E.V., Mordasov A.P., Volshanik V.V., Zuykov A.L. A. s. na izobretenie SSSR № 874853, MKI E02V8/06. Gasitel’ energii potoka vody [Certificate of authorship of the USSR no. 874853, MKI E02V8/06. Energy Dissipating Device]. Zayavka № 2924103/29-15 ; zayavl. 23.10.1980 ; opubl. 29.05.1981. Byul. № 39 [Notice no. 2924103/29-15 ; appl. 23.10.1980 ; publ. 29.05.1981. Bulletin no. 39]. P. 161. (In Russian)
  18. Krivchenko G.I., Kvyatkovskaya E.V., Mordasov A.P., Volshanik V.V., Zuykov A.L. A. s. na izobretenie SSSR № 920099, MKI E02V8/06. Vodosbrosnoe ustroystvo [Certificate of authorship of the USSR no. 920099, MKI E02V8/06. Spillway Device]. Zayavka № 2787006/29-15 ; zayavl. 29.06.1979 ; opubl. 15.04.1982. Byul. № 14 [Notice no. 2787006/29-15 ; appl. 29.06.1979 ; publ. 15.04.1982. Bulletin no. 14]. P. 91. (In Russian)
  19. Mordasov A.P., Volshanik V.V, Zuykov A.L. A. s. na izobretenie SSSR № 924233, MKI E02V8/06. Vodosbrosnoe ustroystvo i ego variant [Certificate of Authorship of the USSR no. 924233, MKI E02V8/06. Spillway Device and its Variant]. Zayavka № 3226699 ; zayavl. 30.12.1980 ; opubl. 30.04.1982. Byul. № 16 [Notice no. 3226699 ; appl. 30.12.1980 ; publ. 30.04.1982. Bulletin no. 16]. P. 140. (In Russian)
  20. Chepaykin G.A., Redchenko I.S., Zuykov A.L. A. s. na izobretenie SSSR № 1010184, MPK E02V8/06. Sposob gasheniya energii potoka [Certificate of authorship of the USSR no. 1010184, MKI E02V8/06. Way of Energy Dissipation]. Zayavka № 3217678/29-15 ; zayavl. 19.11.1980 ; opubl. 07.04.1983. Byul. № 13 [Notice no. 3217678/29-15 ; appl. 19.11.1980 ; publ. 07.04.1983. Bulletin no. 13]. P. 179. (In Russian)
  21. Krivchenko G.I., Slisskiy S.M., Mordasov A.P., Pravdivets Yu.P., Kvyatkovskaya E.V., Volshanik V.V., Zuykov A.L., Levanov A.V. A. s. na izobretenie SSSR № 1233548, MPK A01K63/04. Gasitel’ energii potoka glubinnogo vodosbrosa [Certificate of authorship of the USSR no. 1233548, MPK A01K63/04. Way of Energy Dissipation of Bottomwater Outlet]. Zayavka № 3641463; zayavl. 14.09.1983 ; opubl. 30.05.1989. Byul. № 20 [Notice no. 3641463; appl. 14.09.1983 ; publ. 30.05.1989. Bulletin no. 20. (In Russian)
  22. Volshanik V.V., Zuykov A.L., Orekhov G.V., Churin P.S. Pat. № 2483158 RF, MPK V02V8/06. Vikhrevoy vodosbros [Russian Patent no. 2483158 RF, MPK V02V8/06. Vortex Water Disposal]. Zayavka № 2011140562/13 ; zayavl. 06.10.2011 ; opubl. 27.05.2013. Byul. № 15 [Notice no. 2011140562/13 ; appl. 06.10.2011 ; publ. 27.05.2013. Bulletin no. 15]. Patent holder FGBOU VPO MGSU, 11 p. (In Russian)
  23. Mordasov A.P., Volshanik V.V., Zuykov A.L., Levanov A.V. A. s. na izobretenie SSSR № 1073489, MPK F01N1/06. Glushitel’ shuma gazovogo potoka [Certificate of authorship of the USSR no. 1073489, MPK F01N1/06. Gas Flow Noise Suppressor]. Zayavka № 3504045/25-06 ; zayavl. 26.10.1982 ; opubl. 15.02.1984. Byul. № 6 [Notice no. 3504045/25-06 ; appl. 26.10.1982 ; publ. 15.02.1984. Bulletin no. 6]. 118 p. (In Russian)
  24. Volshanik V.V., Zuykov A.L., Skatkin M.G. Pat. № 2206378 RF, MPK V0F5/04. Universal’nyy smesitel’ [Russian Patent no. 2206378 RF, MPK V0F5/04. Multimixer]. Zayavka № 2001130700/12 ; zayavl. 14.11.2001 ; opubl. 20.06.2003. Byul. № 17 [Notice no. 2001130700/12 ; appl. 14.11.2001 ; publ. 20.06.2003. Bulletin no. 17]. P. 620. (In Russian)
  25. Mordasov A.P., Volshanik V.V., Zuykov A.L. A. s. na izobretenie SSSR № 856415, MPK A01K63/04. Ustroystvo dlya aeratsii vody v rybovodnykh vodoemakh [Certificate of authorship of the USSR no. 856415, MPK A01K63/04. Device for Water Aeration in Fish-Breeding Basins]. Zayavka № 2840145 ; zayavl. 11.11.1979 ; opubl. 23.08.1981. Byul. № 31 [Notice no. 2840145 ; appl. 11.11.1979 ; publ. 23.08.1981. Bulletin no. 31]. 5 p. (In Russian)
  26. Volshanik V.V., Mordasov A.P., Kan S.V., Meshchankin G.I., Popov V.G., Grigoryan A.N.,Litmans B.A., Krasnolutskaya T.I., Gorkin Yu.A., Yur’evich Yu.I. A. s. na izobretenie SSSR № 1143076, MPK A01K63/04. Apparat dlya vyrashchivaniya mikroorganizmov (i ego varianty) [Certificate of authorship of the USSR no. 1143076, MPK A01K63/04. Device for Microorganisms Breeding (and Its Variants]. Zayavka № 3628255 ; zayavl. 22.07.83 [Notice no. 3628255 ;appl. 22.07.83. (In Russian)
  27. Mordasov A.P., Volshanik V.V., Zuykov A.L. A. s. na izobretenie SSSR № 963362, MKI E02V8/06. Dvukhkomponentnaya forsunka [Certificate of authorship of the USSR no. 963362, MKI E02V8/06. Doublet Injector]. No. 3226249 ; appl. 30.12.80. (In Russian)
  28. Mordasov A.P., Volshanik V.V., Zuykov A.L., Levanov A.V. A. s. na izobretenie SSSR № 1083684, MPK A01K63/04. Reaktivnyy dvigatel’ [Certificate of authorship of the USSR no. 1083684, MPK A01K63/04. Jet Engine]. Zayavka № 3504044 ; zayavl. 26.10.82 [Notice no. 3504044 ; appl. 26.10.82. (In Russian)
  29. Mordasov A.P., Volshanik V.V., Zuykov A.L., Levanov A.V. A. s. na izobretenie SSSR № 1188498, MPK F28C1/00. Gradirnya [Certificate of authorship of the USSR no. 1188498, MPK F28C1/00. Water Cooling Tower]. Zayavka № 3552449/24-06 ; zayavl. 09.02.1983 ;opubl. 30.10.1985. Byul. № 40 [Notice no. 3552449/24-06 ; appl. 09.02.1983 ; publ. 30.10.1985. Bulletin no. 40]. P. 147. (In Russian)
  30. Mordasov A.P., Volshanik V.V., Zuykov A.L., Levanov A.V., Khodankov N.A. A. s. na izobretenie SSSR № 1467350, MPK F28C1/00. Gradirnya [Certificate of authorship of the USSR no. 1467350, MPK F28C1/00. Water Cooling Tower] № 4288989 ; zayavl. 22.07.1987; opubl. 23.03.1989. Byul. № 11 [No. 4288989 ; appll. 22.07.1987; publ. 23.03.1989. Bulletin no. 11]. P. 27. (In Russian)
  31. Bogdanov V.M., Borovkov V.S., Volshanik V.V. Ochistka bol’shogo pruda moskovskogo zooparka sistemoy zamknutogo vodooborota i struyno-vikhrevoy aeratsii [Cleaning the Large Pond of the Moscow Zoo by Closed Water System and the Swirling Jet Aeration]. Chistyy gorod [Clean City]. 2000, no. 1, pp. 42—48. (In Russian)
  32. Boykova I.G., Volshanik V.V., Karpova N.B., Pechnikov V.G., Pupyrev E.I. Ekspluatatsiya, rekonstruktsiya i okhrana vodnykh ob
  33. Borovkov V.S.‚ Volshanik V.V. Kompleksnye tekhnologii rekonstruktsii gorodskikh vodnykh ob
  34. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka [Building Materials, Equipment and Technologies of the 21st Century]. 2003, no. 8 (55), pp. 44—55. (In Russian)
  35. Borovkov V.S., Volshanik V.V., Karelin V.Ya., Pupyrev E.I., Bayaraa U. Sistemy podderzhaniya kachestva vody v gorodskikh vodnykh ob
  36. Borovkov V.S.‚ Volshanik V.V.‚ Orekhov G.V. Inzhenernaya sistema podderzhaniya kachestva vody v gorodskikh vodnykh ob
  37. Borovkov V.S., Volshanik V.V., Orekhov G.V. Oborudovanie i vysokoeffektivnye tekhnologii vosstanavlivaniya i ekspluatatsii gorodskikh vodnykh ob
  38. Borovkov V.S., Volshanik V.V., Orekhov G.V. Tekhnologii podderzhaniya samoochishchayushchey sposobnosti vody v gorodskikh vodnykh ob
  39. Volshanik V.V.‚ Orekhov G.V. Defitsit rastvorennogo kisloroda v vodoemakh na selitebnykh territoriyakh i sistemy iskusstvennoy aeratsii i zamknutogo vodooborota [Deficiency of Dissolved Oxygen in Ponds in Residential Areas and Artificial Aeration Systems and Closed Water Rotation]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2008, no. 1, pp. 243—246. (In Russian)
  40. Gidravlicheskie raschety vodosbrosnykh gidrotekhnicheskikh sooruzheniy : spravochnoe posobie [Hydraulic Calculations of Waterworks Intakes : Reference Book]. Moscow, Energoatomizdat Publ., 1988, pp. 233—248. (In Russian)
  41. Zuykov A.L. Gidrodinamika tsirkulyatsionnykh techeniy [Hydrodynamics of Circulating Currents]. Moscow, ASV Publ.‚ 2010, 216 p. (In Russian)
  42. Orekhov G.V. Vodnye ob’ekty na urbanizirovannykh territoriyakh i inzhenernye sistemy aeratsii i zamknutogo vodooborota [Water Objects in Urban Areas and Engineering of the Aeration System and Closed Water Rotation]. Ekologiya urbanizirovannykh territoriy [Ecology of Urbanized Territories]. 2008, no. 2, pp. 88—93. (In Russian)
  43. Orekhov G.V. Gidromekhanicheskiy sposob uluchsheniya kachestva vody v vodnykh ob’ektakh [Hydromechanical Way to Improve Water Quality in Water Objects]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2008, no. 4, pp. 175—180. (In Russian)
  44. Borovkov V.S., Volshanik V.V., Orekhov G.V. Opyt klassifikatsii gorodskikh vodnykh o’ektov po geneticheskim i inzhenerno-ekologicheskim priznakam [Experience of Urban Water Objects Classification according to Genetic and Engineering-Environmental Grounds]. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka [Construction Materials, Equipment, Technologies of the 21st Century]. 2004, no. 4 (63), pp. 62—65. (In Russian)
  45. Akhmedov V.K.‚ Volshanik V.V. Raschet techeniy s vozvratnymi zonami v kamere otstoynika [Calculation of Flows with Reverse Zones in Settling Basin]. 1996, no. 5, pp. 29—31. (In Russian)
  46. Borovkov V.S., Volshanik V.V., Galant M.A., Dorkina I.V., Karelin V.Ya. Inzhenernaya sistema podderzhaniya kachestva vody prudov Lefortovskogo parka [Engineering System to Maintain Water Quality in the Ponds of Lefortovo Park]. Vestnik Otdeleniya stroitel’nykh nauk Rossiyskoy akademii arkhitektury i stroitel’nykh nauk [Bulletin of the Department of Civil Engineering of the Russian Academy of Architecture and Construction Sciences]. 2001, no. 4, pp. 28—38. (In Russian)
  47. Borovkov V.S., Volshanik V.V., Orekhov G.V. Inzhenernye sistemy vodooborota i aeratsii dlya ochistki vody v gorodskikh vodnykh ob
  48. Borovkov V.S., Volshanik V.V., Orekhov G.V. Inzhenernye sistemy zamknutogo vodooborota dlya intensifikatsii protsessov samoochishcheniya vody v gorodskikh vodnykh ob
  49. Volshanik V.V., Aniskin N.N. Ob ispol’zovanii aktivnykh gidrodinamicheskikh rezhimov pri iskusstvennoy aeratsii stochnykh vod [On the Use of Active Hydrodynamic Regimes for Artificial Aeration of Wastewater]. Sozdanie i vnedrenie sovremennykh apparatov s aktivnymi gidrodinamicheskimi rezhimami dlya tekstil’noy promyshlennosti i proizvodstva khimicheskikh volokon : tezisy dokladov Vsesoyuznoy konferentsii (14—16 noyabrya 1989 g.) [Abstracts of the All-Union conference “Development and Implementation of Modern Devices with Active Hydrodynamic Regimes for the Textile Industry and Production of Chemical Fibers]. Moscow, 1989, pp. 147—148. (In Russian)
  50. Volshanik V.V. Zuykov A.L., Karelin V.Ya., Orekhov G.V. Vikhrevye aeratory — printsip deystviya i konstruktsii [Swirl Aerators — Action Principle and Design]. Sbornik nauchnykh trudov MGSU [Collection of Scientific Papers of Moscow State University of Civil Engineering]. Moscow, MGSU Publ., 2001, pp. 95—101. (In Russian)
  51. Volshanik V.V., Zuykov A.L.‚ Orekhov G.V.‚ Bayaraa U. Osobennosti rabochego protsessa kontrvikhrevykh aeratorov i zadachi ikh gidravlicheskikh issledovaniy [Features of the Working Process of Counter Vortex Aerators and Objectives of Hydraulic Studies]. Ekologiya urbanizirovannykh territoriy [Ecology of Urbanized Territories]. 2013, no. 2, pp. 74—80. (In Russian)
  52. Volshanik V.V., 3uykov A.L.‚ Orekhov G.V.‚ Bayaraa U. Raskhod vody i ezhektsiya vozdukha v kontrvikhrevom aeratore [Water Consumption and Air Ejection in Counter Vortex Aerator]. Ekologiya urbanizirovannykh territoriy [Ecology of Urbanized Territories]. 2014, no. 2, pp. 33—40. (In Russian)
  53. Volshanik V.V., Zuykov A.L., Orekhov G.V., Bayaraa U. Techenie v kamere smesheniya kontrvikhrevogo aeratora [The Flow in the Mixing Chamber of Counter Vortex Aerator]. Ekologiya urbanizirovannykh territoriy [Ecology of Urbanized Territories]. 2015, no. 1, pp. 23—28. (In Russian)
  54. Volshanik V.V., Zuykov A.L., Orekhov G.V., Svitaylo V.D.‚ Skatkin M.G. Ispol’zovanie vikhrevykh aeratorov dlya intensifikatsii protsessov ochistki prirodnykh vod [Using Vortex Aerators for Intensifying the Processes for Wastewater Treatment]. Inzhenernaya zashchita okruzhayushchey sredy. Ochistka vod. Utilizatsiya otkhodov [Engineering Protection of the Environment. Water Purification. Waste Disposal]. Moscow, ASV Publ., 2002, pp. 97—106. (In Russian)
  55. Volshanik V.V., Mordasov A.P.‚ Akhmetov B.K. Ekologicheskaya effektivnost’ primeneniya struyno-vikhrevykh aeratorov po rezul’tatam model’nykh i naturnykh ispytaniy [Environmental Efficiency of Jet Vortex Aerators according To the Results of Modeling and Field Tests]. Fizicheskoe i matematicheskoe modelirovanie gidravlicheskikh protsessov : tezisy nauchno-tekhnicheskogo soveshchaniya [Abstracts of Scientific-Technical Conference “Physical And Mathematical Modeling of Hydraulic Processes”]. Divnogorsk, 1989, pp. 62—63. (In Russian)
  56. Volshanik V.V.‚ Mordasov A.P.‚ Ivanova T.A., Krotova A.V., Savina M.M. Gidravlicheskiy raschet kontrvikhrevykh aeratorov i zadachi standartizatsii ikh konstruktsiy [Hydraulic Calculation of Counter Vortex Aerators and Objectives of Standardization of Their Designs]. Trudy XI Mezhdunarodnogo nauchnogo simpoziuma studentov, molodykh nauchnykh rabotnikov [Proceedings of the 11th International Scientific Symposium of Students, Young Scientists]. Zielona Gora, Poland, 1989, pp. 206—211. (In Russian)
  57. Volshanik V.V.‚ Mordasov A.P.‚ Orekhov G.V. Proekty kontrvikhrevykh aeratorov dlya povysheniya kachestva vody v vodokhranilishchakh [Projects of Counter Vortex Aerators to Improve Water Quality in Reservoirs]. Sostoyanie i perspektivy razvitiya gidroenergetiki : tezisy Vsesoyuznogo soveshchaniya. Sayano-Shushenskaya GES. 14—16 sentyabrya 1988 [Abstracts of All-Union Conference “Status and Development Prospects of Hydropower”. September 14—16, 1988]. (In Russian)
  58. Volshanik V.V., Pogorelov A.E. Primenenie kontrvikhrevykh aeratorov v kachestve ustroystva podachi i smesheniya koagulyanta [Applying Counter Vortex Diffusers as Feeder and Mixing the Coagulant]. Proekty razvitiya infrastruktury goroda. Proektirovanie gorodskikh inzhenernykh sistem : sbornik nauchnykh trudov [Collection of Scientific Works “Infrastructure Projects of the City”]. Moscow, Prima-press Ekspo Publ., 2010, no. 10, pp. 54—58. (In Russian)
  59. Karelin V.Ya.‚ Volshanik B.B., Zuykov A.L., Orekhov G.V. Eksperimental’noe obosnovanie optimal’noy formy protochnoy polosti vikhrevogo aeratora [Experimental Substantiation of the Optimal Cavity Form of the Vortex Flow Aerator]. Vestnik Otdeleniya stroitel’nykh nauk Rossiyskoy akademii arkhitektury i stroitel’nykh nauk [Bulletin of the Department of Civil Engineering of the Russian Academy of Architecture and Construction Sciences]. 2005, no. 9, pp. 229—237. (In Russian)
  60. Akhmetov B.K., Volshanik V.V., Zuykov A.L., Orekhov G.V. Modelirovanie i raschet kontrvikhrevykh techeniy [Modeling and Calculation of Counter Vortex Currents]. Moscow, MGSU Publ., 2012, 252 p. (In Russian)
  61. Karelin V.Ya., Volshanik V.V., Zuykov A.L. Nauchnoe obosnovanie i tekhnicheskoe ispol’zovanie effekta vzaimodeystviya zakruchennykh potokov [Scientific Substantiation and Technical Use of the Synergies of Swirling Flows]. Vestnik Otdeleniya stroitel’nykh nauk Rossiyskoy akademii arkhitektury i stroitel’nykh nauk [Bulletin of the Department of Civil Engineering of the Russian Academy of Architecture and Construction Sciences]. 2000, no. 3, pp. 37—44. (In Russian)
  62. Volshanik V.V., Zuykov A.L., Karelin V.Ya., Mordasov A.P., Orekhov G.V. Kontrvikhrevye ustroystva dlya intensifikatsii protsessov peremeshivaniya, masso- i teploobmena, gasheniya energii, dezintegratsii konglomeratov. Chast’ 2 [Counter Vortex Devices for Intensification of the Processes of Mixing, Heat and Mass Transfer, Energy Dissipation, Disintegration of Conglomerates. Part 2]. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka [Construction Materials, Equipment and Technologies of the 21st Century]. 2004, no. 09 (68), pp. 44—45. (In Russian)
  63. Volshanik V.V.‚ Zuykov A.L., Orekhov G.V. Gidravlicheskiy raschet protochnoy chasti kontrvikhrevykh aeratorov [Hydraulic Calculation of the Flowing Part of Counter Vortex Aerators]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Technique]. 2009, no. 12, pp. 50—56. (In Russian)
  64. Volshanik V.V.‚ Orekhov G.V., Zuykov A.L., Karelin V.Ya. Inzhenernaya gidravlika zakruchennykh potokov zhidkosti [Engineering Hydraulics of Swirling Flow]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 2000, no. 11, pp. 23—26. (In Russian)
  65. Volshanik V.V.‚ Zuykov A.L., Orekhov G.V. Tsirkulyatsionnye techeniya v nauke i tekhnike [Circulating Currents in Science and Technology]. Delovaya slava Rossii [Business Glory of Russia]. 2011, no. 2 (30), pp. 48—50. (In Russian)
  66. Volshanik V.V., Danek M., Zuykov A.L.‚ Mordasov A.P.‚ Rybnikar I. Gidravlicheskiy raschet gidrotekhnicheskikh sooruzheniy s zakrutkoy potoka [Hydraulic Calculation of Hydraulic Structures with Flow Swirl]. Moscow, MISI Publ., 1992, 64 p. (In Russian)
  67. Mordasov A.P.‚ Volshanik V.V., Zuykov A.L., Levanov A.B. Ispol’zovanie vzaimodeystvuyushchikh zakruchennykh potokov v reshenii problem zashchity okruzhayushchey sredy [Using Interacting Swirling Flows in Addressing Environmental Problems]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo i arkhitektura [News of the Institutions of Higher Education. Construction and Architecture]. 1984, no. 8, pp. 97—101. (In Russian)
  68. Orekhov G.V.‚ Zuykov A.L., Volshanik V.V. Kontrvikhrevoe polzushchee techenie [Counter Vortex Creeping Flow]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 4, pp. 172—180. (In Russian)
  69. Zuykov A.L., Orekhov G.V., Volshanik V.V. Model’ techeniya Gromeki — Bel’trami [Analytical Model of Gromeka — Beltrami Flow]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 4, pp. 150—159. (In Russian)
  70. Zuykov A.L., Orekhov G.V., Volshanik V.V. Raspredelenie azimutal’nykh skorostey v laminarnom kontrvikhrevom techenii [Distribution of Azimuthal Velocities in a Laminar Counter Vortex Flow]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 5, pp. 150—161. (In Russian)
  71. Karelin V.Ya.‚ Krivchenko G.I., Mordasov A.P., Volshanik V.V., Zuykov A.L., Akhme-tov V.K. Fizicheskoe i matematicheskoe modelirovanie sistem gasheniya energii v vikhrevykh vodosbrosakh [Physical and Mathematical Modeling of Systems of Energy Dissipation in Vortex Spillways]. Fizicheskoe i matematicheskoe modelirovanie gidravlicheskikh protsessov :tezisy nauchno-tekhnicheskogo soveshchaniya, g. Divnogorsk [Abstracts of Scientific-Technical Conference “Physical and Mathematical Modeling of Hydraulic Processes”, Divnogorsk]. 1989, pp. 11—12. (In Russian)
  72. Karelin V.Ya.‚ Mordasov A.P., Zuykov A.L., Volshanik V.V. Chislennye metody eksperimental’nogo issledovaniya kharakteristik zakruchennogo potoka zhidkosti [Numerical Methods of Experimental Studies of the Characteristics of Swirling Fluid Flow]. Trudy simpoziuma MAGI [Works of the MAGI Symposium]. Divnogorsk. Belgrad, Yugoslaviya, 1990. (In Russian)
  73. Volshanik V.V., Evstigneev N.M., Zuykov A.L., Orekhov G.V. Vliyanie turbulentnoy diffuzii na protsess separatsii neftesoderzhashchikh primesey v tsilindricheskom gidrotsiklone [Effect of Turbulent Diffusion in the Process of Separation of Oily Contaminants in a Cylindrical Hydrocyclone]. Mezhvuzovsiy sbornik nauchnykh trudov po gidrotekhnicheskomu i spetsial’nomu stroitel’stvu [Interuniversity Collection of Scientific Papers on Hydraulic Engineering and Special Construction]. Moscow, MGSU Publ., 2002, pp. 55—62. (In Russian)
  74. Volshanik V.V., Zuykov A.L., Mordasov A.P. Analiticheskiy metod gidravlicheskogo rascheta vikhrevykh shakhtnykh vodosbrosov [Analytical Method of Hydraulic Calculation of Vortex Glory Hole Spillway]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 1989, no. 4, pp. 38—42. (In Russian)

Скачать статью

Hydraulic modeling of the flows with counter-rotating coaxial layers

Вестник МГСУ 6/2014
  • Zuykov Andrey L'vovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Department of Hydraulics and Water Resources, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation; +7 (495)287-49-14, ext. 14-18; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 114-125

The article is devoted to hydraulic modeling of flows with counter-rotating coaxial layers. Dynamic similarity criteria of such flows were found by the inspection analysis of the Reynolds equations. It was found that the hydrodynamic similarity criteria for physical modeling of unsteady turbulent circular-longitudinal flows with counter-rotating coaxial layers of viscous incompressible fluid are: Strouhal number - the ratio of forces of local and convective inertia, Rossby number characterizes the ratio of the azimuthal and axial velocity, Froude number - the ratio of forces of convective inertia to the forces of gravity, Euler number - the ratio of pressure forces to the convective forces of inertia, Weber number - the ratio of the convective inertia forces to surface tension forces, Reynolds number - the ratio of the convective inertia forces to the forces of molecular viscosity, Karman number - the ratio of dispersion velocity vector of fluid particles to the flow velocity. The limit value of the Reynolds number was found at the lower boundary conditions of automodel zone of such flow. It is shown that Weber and Rossby criteria for physical modeling of such flows are not determinative. It was found out that turbulent circular-longitudinal flow with counter-rotating coaxial layers are not modeled using Karman criterion. In this connection, there is a need to conduct experimental methodological research of turbulent flows with counter-rotating coaxial layers on stands equipped means of three-dimensional laser Doppler anemometry. Integral criteria of dynamic similarity of circular-longitudinal flows was considered - Heeger-Baer number (swirl number) and Abramovich number, characterizing the ratio of the angular momentum and momentum of such flows. In comparison with the swirl number, Heeger-Baer number is more preferable. Abramovich number is equal to the geometric characteristics of the local swirler as similarity criterion of circular-longitudinal incompressible fluid flows, including counter-rotating coaxial layers. Basing on summation of the angular momenta of coaxial counter-rotating layers, integral criterion of dynamic similarity of these flows was obtained. A common system of basic hydrodynamic similarity criteria was defined for physical modeling of unsteady turbulent circular-longitudinal viscous liquid flows with counter-rotating coaxial layers. For this kind of flow criterial equation was compiled.

DOI: 10.22227/1997-0935.2014.6.114-125

Библиографический список
  1. Sviridenkov A.A., Tret'yakov V.V., Yagodkin V.I. Ob effektivnosti smesheniya koaksial'nykh potokov, zakruchennykh v protivopolozhnye storony [On the Effectiveness of Mixing Coaxial Flows Twisted in Opposite Directions]. Inzhenerno-fizicheskiy zhurnal [Journal of Engineering Physics]. Minsk, Belarus, 1981, vol. 41, no. 3, pp. 407—413.
  2. Sviridenkov A.A., Tret'yakov V.V. Eksperimental'noe issledovanie smesheniya turbulentnykh protivopolozhno zakruchennykh struy na nachal'nom uchastke v kol'tsevom kanale [Experimental Study of Turbulent Mixing of Oppositely Swirled Jets in the Initial Section in Annular Channel]. Inzhenerno-fizicheskiy zhurnal [Journal of Engineering Physics]. Minsk, Belarus, 1983, vol. 44, no. 2, pp. 205—210.
  3. Vu B.T., Gouldin F.C. Flow Measurements in a Model Swirl Combustor. AIAA Journal. 1982, vol. 20, no. 5, pp. 642—651. DOI: http://dx.doi.org/10.2514/3.51122.
  4. Mattingly J.D., Oates G.S. An Investigation of the Mixing of Co-annular Swirling Flows. AIAA paper. 1985, no. 85-0186, 15 p.
  5. Chen Y.S. Numerical Methods for Three-Dimensional Incompressible Flow Using Nonorthogonal Body-Fitter Coordinate Systems. AIAA paper. 1986, no. 86—1654, 9 р.
  6. Chao Y.C. Recirculation Structure of the Co-annular Swirling Jets in a Combustor. AIAA Journal. 1988, vol. 26, no. 5, pp. 623—625. DOI: http://dx.doi.org/10.2514/3.9944.
  7. Akhmetov V.K., Shkadov V.Ya. Chislennoe modelirovanie vyazkikh vikhrevykh techeniy dlya tekhnicheskikh prilozheniy [Numerical Simulation of Viscous Vortex Flows for Technical Applications]. Moscow, ASV Publ., 2009, 176 p.
  8. Akhmetov V.K., Volshanik V.V., Zuykov A.L., Orekhov G.V. Modelirovanie i raschet kontrvikhrevykh techeniy [Modeling and Calculation of Counter-Vortex Flows]. Ed. By A.L. Zuykov. Мoscow, ASV Publ., 2012, 252 p.
  9. Gupta A.K., Lilley D., Syred N. Swirl Flows. London, Abacus Press, 1984, 475 p.
  10. Zuykov A.L. Kriterii dinamicheskogo podobiya tsirkulyatsionnykh techeniy [Criteria Dynamic Similarity of Circulating Flows]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 3, рp. 106—112.
  11. Zuykov A.L. Gidrodinamika tsirkulyatsionnykh techeniy [Hydrodynamics of Circulating Currents]. Moscow, ASV Publ., 2010, 216 p.
  12. Wilcox D.C. Turbulence Modeling for CFD. DCW Industries, 2nd ed.1998, 537 p.
  13. Volshanik V.V., Zuykov A.L., Mordasov A.P. Zakruchennye potoki v gidrotekhnicheskikh sooruzheniyakh [Swirling Flows in Hydraulic Structures]. Мoscow, Energoatomizdat Publ., 1990, 280 p.
  14. Kiselyov P.G., editor. Spravochnik po gidravlicheskim raschetam [Handbook of Hydraulic Calculations]. 4th Ed., revised and expanded. Moscow. Energiya Publ., 1972, 382 р.
  15. Batchelor G.K. An Introduction to Fluid Dynamics. Cambridge University Press, New ed., 2002, 631 p.
  16. Zuykov A.L. Povyshenie turbulentnosti tsirkulyatsionnykh techeniy [Increased Turbulence of Circulating Currents]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2009, no. 2, pp. 80—95.
  17. Orekhov G.V. Modelirovanie kontrvikhrevykh sistem. Masshtabnaya seriya issledovaniy [Modeling Counter Vortex Systems. Large-scale Series of Studies]. Internet-zhurnal «Naukovedenie» [Internet Journal "Science Studies"]. 2013, no. 4-54TBH413, 11 p.
  18. Knauss J., Rotterdam. A.A., editors. Swirling Flow Problems at Intakes. Balkema Publ., 1987, 165 p.
  19. Kapustin S.A., Orekhov G.V., Churin P.S. Eksperimental'nye model'nye issledovaniya kontrvikhrevykh techeniy [Experimental Studies of the Counter Vortex Currents’ Models]. Internet-zhurnal «Naukovedenie» [Internet Journal "Science Studies"]. 2013, no. 4—53TBH413, 16 p.

Cкачать на языке оригинала

Method of determining the optimal coordinate domain in the measurement of water flows turbulence using lad-56 in rectangular channels

Вестник МГСУ 2/2016
  • Volgin Georgiy Valentinovich - Moscow State University of Civil Engineering (National Research University) (MGSU) 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation, Moscow State University of Civil Engineering (National Research University) (MGSU), ; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Kulikov Dmitriy Viktorovich - Institute of Thermophysics named after S.S. Kutateladze SB RAS junior research worker, Institute of Thermophysics named after S.S. Kutateladze SB RAS, 1 prospekt Akademika Lavrent’eva, Novosibirsk, 630090, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 106-115

One of the modern methods of the experimental investigation of water flows turbulence is the method of Laser Doppler Anemometry. At the present time a measuring system “LAD-056” (Russia) is operating in the laboratory of the Department of Hydraulics of MGSU. The authors conducted an analysis of the requirements to experimental data when calculating turbulent characteristics of water flows. The article shows the necessity of checking the database of ripple continuity over time and the required representation of the number of points in the implementation. The results of experiments are presented showing the importance of fixing the length of the implementation and testing time. The authors offered a method of determining the optimal spatial coordinates for the measurement to minimize the time of filling the base of experimental data. According to the methods of defining optimal coordinate domain when measuring turbulent water flows with the use of “LAD-056” in a rectangular channel with glass walls in was established that it is required to conduct measurements within the range from 0 to 120 mm from the closest side wall. In case of greater deepening it is required to use illuminators reducing deflections of laser beams.

DOI: 10.22227/1997-0935.2016.2.106-115

Библиографический список
  1. Al’tshul’ A.D., Kiselev P.G. Gidravlika i aerodinamika : osnovy mekhaniki zhidkosti [Hydraulics and Aerodynamics : Bases of Fluid Mechanics]. Moscow, Stroyizdat Publ., 1965, 274 p. (In Russian)
  2. Smol’yakov A.V., Tkachenko V.M. Izmerenie turbulentnykh pul’satsiy [Measurement of Turbulent Fluctuations]. Leningrad, Energiya Publ., 1980, 264 p. (In Russian)
  3. Loytsyanskiy L.G. Mekhanika zhidkosti i gaza [Fluid and Gas Mechanics]. 7th edition, revised. Moscow, Drofa Publ., 2003, 840 p. (Klassiki otechestvennoy nauki) [Classics of Russian Science] (In Russian)
  4. Skibin V.A., Saren V.E., Savin N.M., Frolov S.M. Turbomachines: Aeroelasticity, Aeroacoustics and Unsteady Aerodynamics. Moscow, TORUS PRESS Ltd., 2006, pp. 446—457.
  5. Ibragimov M.Kh., Subbotin V.I., Bobkov V.P., Sabelev G.I., Taranov G.S. Struktura turbulentnogo potoka i mekhanizm teploobmena v kanalakh [Structure and Mechanism of Turbulent Flow in Heat Exchange Channel]. Moscow, Atomizdat Publ., 1978, 296 p. (In Russian)
  6. Tepaks Leo. Ravnomernoe turbulentnoe dvizhenie v trubakh i kanalakh [A uniform turbulent flow in pipes and channels]. Tallin, Valgus Publ., 1975, 255 p. (In Russian)
  7. Chorin A.J., Marsden J.E. A Mathematical Introduction to Fluid Mechanics. 2000, Springer; 3rd edition, 172 p.
  8. Lyakhter V.M. Turbulentnost’ v gidrosooruzheniyakh [Turbulence inside Hydraulic Structures]. Moscow, Energiya Publ., 1968, 408 p. (In Russian)
  9. Breugem W.P., Boersma B.J. and Uittenbogaard R.E. The Influence of Wall Permeability on Turbulent Channel Flow. J. Fluid Mech. 2006, vol. 562, pp. 35—72. DOI: http://dx.doi.org/10.1017/S0022112006000887.
  10. Loytsyanskiy L.G. O nekotorykh prilozheniyakh metoda podobiya v teorii turbulentnosti [On some applications of similarity Method in turbulence Theory]. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics]. 1935, vol. 2, no. 2, pp. 180—206. (In Russian)
  11. Borovkov V.S. Ruslovye protsessy i dinamika rechnykh potokov na urbanizirovannykh territoriyakh [Channel Processes and Dynamics of River Flows in Urbanized Territories]. Leningrad, Gidrometeoizdat Publ., 1989, 286 p. (In Russian)
  12. Velikanov M.A. Ruslovoy protsess: (osnovy teorii) [Channel Process (Theoretical Framework)]. Moscow, Fizmatlit Publ., 1958, 395 p. (In Russian)
  13. Volgin G.V. Vliyanie dliny realizatsii pul’satsiy skorosti na tochnost’ rascheta turbulentnykh kasatel’nykh napryazheniy [effect of velocity fluctuations length on the calculation accuracy of turbulent shearing stresses]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 9, pp. 93—99. (In Russian)
  14. Bryanskaya Yu.V., Markova I.M., Ostyakova A.V. Gidravlika vodnykh i vzvesenesushchikh potokov v zhestkikh i deformiruemykh granitsakh [Hydraulics of Water Flows and Suspended Matter Bearing Flows in Rigid and Deformable Borders]. Moscow, ASV Publ., 2009, 263 p. (In Russian)
  15. Tarasov V.K., Volgina L.V., Gusak L.N. Prostranstvennye sostavlyayushchie turbulentnoy vyazkosti [Spatial Components of Turbulent Viscosity]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2008, no. 1, pp. 221—224. (In Russian)
  16. Volgina L.V., Tarasov V.K., Volgin G.V. Opredelenie koeffitsienta poleznogo deystviya vzvesenesushchego potoka [Defining Performance Coefficient of a Suspensions-Carrying Flow]. Ledovye i termicheskie protsessy na vodnykh ob”ektakh Rossii : sbornik nauchnykh trudov VI Vserossiyskoy konferentsii (g. Rybinsk, 24—29 iyunya 2013 g.) [Ice and Termal Processes on Water Objects of Russia : Collection of Scientific Works of the 6th All-Russian Conference (Rybinsk, June 24—29, 2013)]. Moscow, KYuG Publ., 2013, pp. 251—256. (In Russian)
  17. Volgina L.V. Vliyanie vida korrelyatsionnoy funktsii na metody opredeleniya makrostruktur turbulentnogo potoka [Influence of Correlation Function Type on the Methods of Identifying Macrostructures of Turbulent Flow]. 2 Mezhdunarodnaya (7 traditsionnaya) NTK molodykh uchenykh, aspirantov i doktorantov [2nd International (7th Traditional) Scientific and Technical Conference of Young Researchers, Postgraduates and Doctoral Students]. Moscow, MGSU Publ., 2004, pp. 204—211. (In Russian)
  18. Klaven A.B., Kopaliani Z.D. Eksperimental’nye issledovaniya i gidravlicheskoe modelirovanie rechnykh potokov i ruslovogo protsessa [Experimental Investigations and Hydraulic Modeling of River Flows and Channel Process]. Saint Petersburg, Nestor-istoriya Publ., 2011, 543 p. (In Russian)
  19. Rakhmanov V.V. Analiz primenimosti opticheskoy immersii dlya diagnostiki techeniy metodom LDA v modelyakh topok slozhnoy geometrii [Analysis of the Applicability of Optical Immersion Technique for Flows Diagnosis Using LDA Method in the Models of Fireboxes of Complex Geometry]. Teplofizicheskie osnovy energeticheskikh tekhnologiy : sbornik nauchnykh trudov IV Vserossiyskoy nauchno-prakticheskoy konferentsii s mezhdunarodnym uchastiem (g. Tomsk, 10—12 oktyabrya 2013 g.) [Proceedings of the 4th All-Russian Science and Practice Conference “Thermophysical Bases of Energy Technologies”]. Tomsk, TPU Publ., 2013, pp. 155—160. (In Russian)
  20. Rakhmanov V.V., Anikin Yu.A., Dvoynishnikov S.V., Kabardin I.K., Naumov I.V., Sadbakov O.Yu. Osobennosti LDA-izmereniy v naturnykh gidrodinamicheskikh eksperimentakh [Features of LDA-measurements in the Field of Hydraulic Engineering Experiments]. Issledovanie, razrabotka i primenenie vysokikh tekhnologiy v promyshlennosti : sbornik trudov Desyatoy Mezhdunarodnoy nauchno-prakticheskoy konferentsii (27—29.04.2011, g. Sankt-Peterburg, Rossiya) [Research, Development and Application of High Technologies in Production : Collection of Works of the 10th International Science and Practice Conference (27—29.04.2011, Saint-Petersburg, Russia)]. Saint-Petersburg, Izdatel’stvo Politekhnicheskogo universiteta Publ., 2011, vol. 3: Vysokie tekhnologii, i fundamental’nye issledovaniya [High Technologies and Fundamental Research]. Pp. 196—198. (In Russian)

Скачать статью

REFINEMENT OF METHODS OF CALCULATION OF HYDRAULIC RESISTANCE COEFFICIENT FOR SMOOTH OPEN CHANNELS

Вестник МГСУ 1/2017 Том 12
  • Volgin Georgiy Valentinovich - Moscow State University of Civil Engineering (MGSU) Head of “Hydraulics and Hydromechanics” Scientific & Research Laboratory, Head of “Water Engineering” Research Education Center, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Страницы 94-98

One of the main tasks of an engineer in design of hydraulic structures is to perform an accurate calculation of losses in a moving flow of liquid, whether that be a head conduit or open channel. Modern technologies make it possible to obtain construction materials enabling to reduce resistance in motion of liquid. Thus, the shifting of motion mode from hydraulically rough into the sphere of hydraulically smooth resistance takes place. In this regard, there is a need for improvement of methods for hydraulic resistance coefficient calculation. The analysis of existing methods for calculating the hydraulic resistance coefficient was performed. Reasons for necessity of the search of modern methods for calculation of this parameter were grounded. The data array that meets the requirements of the task was received using the modern equipment. The analysis of experimental results illustrating the influence of Reynolds number and Froude number, and of ratio of the channel width to the flow depth on the hydraulic resistance coefficient was performed. The revised method of calculating the coefficient of hydraulic resistance of smooth open channels is proposed.

DOI: 10.22227/1997-0935.2017.1.94-98

Cкачать на языке оригинала

Intensity and probability-related properties of turbulence of steady river flows

Вестник МГСУ 9/2012
  • Volynov Mikhail Anatolevich - All-Russian Research Institute of Hydraulic Engineering and Land Reclamation named after A.N. Kostyakov (VNIIGIM) Candidate of Technical Sciences, Associate Professor, Head of Department of Water Resources Management, All-Russian Research Institute of Hydraulic Engineering and Land Reclamation named after A.N. Kostyakov (VNIIGIM), 44 Bolshaya Akademicheskaya st., Moscow, 127550, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Pisarev Denis Vladlenovich - Moscow State University of Civil Engineering (MGSU) Assistant Lecturer, Department of Hydraulics 8 (499) 261-39-12, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 89 - 94

The article represents an overview of the field studies of the intensity and distribution of probability
of longitudinal turbulent velocity fluctuations in river flows with different sizes of beds and
hydrological characteristics. The authors demonstrate that the normalizing transformation of velocity
fluctuations performed by the local friction velocity makes it possible to get the changes of velocity
fluctuations deep inside the flow close to universal.
The authors have also identified that the intensity of turbulent velocity fluctuations exceeds
the friction velocity 2.5-3-fold in the area close to the river bottom, while their intensities demonstrate
their gradual decline closer to the surface of the flow. The authors have derived an approximation
formula, describing the change of the intensity of longitudinal velocity fluctuations
deep inside river flows.
Probability distributions of longitudinal velocity fluctuations were compared to those based on
the law of Gauss. It is proven that they have a kurtosis of a frequency curve as well as an asymmetry
in comparison with the distribution of Gauss, which are most vivid in the area close to the bottom of the flow. Due to the fact that the coefficient of asymmetry includes a third degree of velocity fluctuations,
and a kurtosis of the frequency curve, experimental identification of these characteristics
is problematic for the reason of their instability. The new information concerning the intensity and
probability properties of the river flow turbulence can be used in projecting the mixture formation and
mass exchange processes ongoing inside river flows.

DOI: 10.22227/1997-0935.2012.9.89 - 94

Библиографический список
  1. Kukolevskiy G.A. Gidravliko-veroyatnostnye kharakteristiki ruslovykh protsessov [Hydraulic and Probablistic Characteristics of River Bed Processes]. Works of the 5th National Hydrology Congress. Leningrad, Gidrometeoizdat Publ., 1988, vol. 10, Book 1, pp. 98—103.
  2. Harvey A.M. Some Aspects of the Relation between Channel Characteristics and Riffle Spacing in Meandering Channels. Wn. J. Sci., 1975, vol. 275, pp. 470—478.
  3. Bågin Z.B. Relationship between Flow Shear Stress and Stream Patterns. J. Hydrol. 1981, no. 3-4, pp. 307—319.
  4. Bryanskaya Yu.V., Baykov V.N., Volynov M.A. Raspredelenie skorostey i gidravlicheskoe soprotivlenie pri techenii v trubakh, kanalakh i rechnykh ruslakh [Velocity Distribution and Hydraulic Resistance of Flows in Pipes, Channels and River Beds]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 2011, no. 3, pp. 37—39.
  5. Davies T.R., Sutherland A.J. Resistance to Flow Past Deformable Boundaries. Earth Surf. Processes, 1980, vol. S, pp. 175—179.
  6. Kont-Bello Zh. Turbulentnoe techenie v kanale s parallel’nymi stenkami [Turbulent Flow in the Parallel Wall Channel]. Moscow, Mir Publ., 1968, 325 p.
  7. Hanjalic K., Launder B. Fully Developed Asymmetric Flow in Plane Channel. J. Fluid Mech., vol. 51, part 2, 1972.
  8. Berkovich K.M., Chalov R.S. Ruslovoy rezhim rek i printsipy ego regulirovaniya pri razvitii volnovogo transporta [Regimen of River Beds and Principles of Its Regulation with Reference to Water Transport Development]. Geografi ya i prirodnye resursy [Geography and Natural Resources]. 1993, no. 1, pp. 10—17.

Cкачать на языке оригинала

DETERMINATION OF THRESHOLD VALUES OF TURBULENCE ZONE FOR CONDUCTING HYDRAULIC EXPERIMENTS ON PIPELINES WITH TEXTURED INNER SURFACE

Вестник МГСУ 5/2018 Том 13
  • Orlov Vladimir Aleksandrovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Head of the Department of Water Supply and Waste Water Treatment, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Dezhina Arina Sergeevna - Moscow State University of Civil Engineering (National Research University) (MGSU) Postgraduate, Department of Water Supply and Waste Water Treatment, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Korolev Andrey Anatol’evich - OOO «Spetsial’noe konstruktorskoe byuro “Geotekhnika”» Engineer, OOO «Spetsial’noe konstruktorskoe byuro “Geotekhnika”», 10 2-ya Roschinskaya str., Moscow, 115191, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 624-632

Subject: the article is devoted to the study of the processes of vortex formation (microturbulence) in non-pressure pipelines of drainage systems with a corrugated surface during transportation of liquid through them. The results of experiments on the study of microturbulence and carrying capacity of water flow at small fillings and velocities in an open tray are described for the flow past point and linearly elongated obstacles. On the basis of semi-phenomenological theory of turbulence with the use of universal indicator, expressed as a criterion of turbulence, theoretical derivations are presented for determination of zone of conducting subsequent experiments in the corresponding ranges of velocities at different heights of obstacles. The assumption is made that it is necessary to theoretically study the dependence of roughness coefficient on the ratio of obstacle height to pipe diameter in a wide range of fillings. The article presents the results of field experiments to identify the efficiency of pipeline network carrying capacity as a function of the filling value at a certain character of artificial obstacles. Research objectives: theoretical and experimental study of vortex formation processes and carrying capacity of fluid flow as it moves along a non-pressure tray with a textured surface to identify the optimal regime of pipeline operation. Materials and methods: literature sources were analyzed, stands for conducting field experiments were developed. We conducted a series of experiments and set forth theoretical propositions and possibilities for improvement of transporting capacity of the flow as it moves along the gravity pipeline with different textured inner surface. To determine the flow rate, a volumetric method was used, and the degree of turbulence was estimated using photo and movie equipment based on the use of black and white effect. Results: formation of flow microturbulence during placement of single or group obstacles in an open tray was investigated, graphs were constructed and mathematical dependences of the roughness coefficient on the ratio of obstacle height to pipe diameter were obtained for different filling values. A comparison of the values of the roughness coefficient was made for real sewer pipes made of different materials with artificial roughness generated on the experimental setup. The practical absence of discrepancies between artificial and natural roughnesses in the range of self-cleaning rates of water flow and normative fillings is established. Conclusions: studies have shown that the presence of artificial roughness in the form of various types of obstacles on the inner surface of the pipeline (by height, pitch, configuration) noticeably affects the transporting capacity of water flow. This makes it possible to use a textured surface in the form of polymer hoses applied to the inner surface of pipelines during their trenchless renovation to ensure self-cleaning of pipes and improve efficiency of sediments transportation.

DOI: 10.22227/1997-0935.2018.5.624-632

Cкачать на языке оригинала

Результаты 1 - 10 из 10