DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

Peculiarities of stress distribution in beamless floor plate as a result of prestressing forces

Вестник МГСУ 9/2014
  • Kremnev Vasiliy Anatol'evich - LLC "InformAviaKoM" Director General, LLC "InformAviaKoM", 2 Pionerskaya str., Korolev, Moscow Region, 141074, Russian Federation; +7 (495) 645-20-62; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Kuznetsov Vitaliy Sergeevich - Mytishchi Branch, Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Architectural and Construction Design, Mytishchi Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospect, Mytishchi, Moscow Region, 141006, Russian Federation; +7 (495) 583-07-65; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Talyzova Yulia Aleksandrovna - Mytishchi Branch, Moscow State University of Civil Engineering (MGSU) Assistant Lecturer, Department of Architectural and Construction Design, Mytishchi Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospect, Mytishchi, Moscow Region, 141006, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 48-53

The article discusses the features of the stress state of the plate of capitalless girderless overlapping as a result of force of prestressed reinforcement, where the reinforcement used is high-strength reinforcement in flexible shell of "Monostrend" type. The peculiarity of specific design solution is a diagonal arrangement of prestressed reinforcement with heads fixed at the outer edges of the columns. The purpose of this arrangement of the prestressed reinforcement is deflection reduction of the central area of a plate and reduction of the width of cracks on the lower surface in the bay and on the upper surface of the support areas. The article shows the distribution of normal stresses of existing loads in the plane plate. The stress distribution over the thickness of the plate was assumed uniform. In order to establish design size of a section in diagonal direction it is possible to set the variables x and y and then calculate the coordinates of stress distribution curves in the concrete as a result of compression by prestress force. The authors offer diameter values of equal stresses in case of 4 and 8 K7O ropes. The method of calculating prestressing losses of concrete creep are offered.

DOI: 10.22227/1997-0935.2014.9.48-53

Библиографический список
  1. Rukovodstvo po proektirovaniyu zhelezobetonnykh konstruktsiy s bezbalochnymi perekrytiyami [Design Guidelines for Reinforced Concrete Structures with Beamless Floor]. Moscow, Stroyizdat Publ., 1979, 63 p.
  2. Pogrebnoy I.O., Kuznetsov V.D. Bezrigel'nyy predvaritel'no napryazhennyy karkas s ploskim perekrytiem [Beamless Prestressed Frame with Flat Roof]. Inzhenerno-stroitel'nyy zhurnal [Engineering and Construction Journal]. 2010, no. 3, pp. 52—55.
  3. Karpenko N.I. Obshchie modeli mekhaniki zhelezobetona [General Models of Reinforced Concrete Mechanics]. Moscow, Stroyizdat Publ., 1996, 416 p.
  4. Beglov A.D., Sanzharovskiy R.S. Teoriya rascheta zhelezobetonnykh konstruktsiy na prochnost' i ustoychivost' : Sovremennye normy i Evrostandarty [Theory of Strength and Stability Calculation of Reinforced Concrete Structures]. Moscow, Saint Petersburg, ASV Publ., 2006, 221 p.
  5. Vol'mir A.S. Gibkie plastinki i obolochki [Flexible Plates and Shells]. Moscow, Gosudarstvennoe izdatel’stvo tekhniko-teoreticheskoy literatury Publ., 1956, 419 p.
  6. Muttoni A. Conception et dimensionnement de la precontrainte. Ecole Polytechnique federale de Lausanne, Ann?e acad?mique 2011—2012, 35 p. Available at: http://i-concrete.epfl.ch/cours/epfl/pb/2012/Pr%C3%A9sentations/ponts-1-P-2012-05-08.pdf/. Date of access: 22.01.2014.
  7. Sitnikov S.L., Miryushenko E.F.; patent holder S.L. Sitnikov. Pat. 2427686 RF, MPK E04C 5/10. Sposob izgotovleniya predvaritel'no napryazhennykh zhelezobetonnykh konstruktsiy i monostrend. ¹ 2009132979/03 ; zayavl. 02.09.2009 ; opubl. 27.08.2011. Byul. ¹ 24 [Russian Patent 2427686 RF, MPK E04C 5/10. Method of Manufacturing Prestressed Reinforced Concrete Structures and Monostrends. No. 2009132979/03 ; notice 02.09.2009 ; publ. 27.08.2011. Bulletin no. 24.]. 8 p.
  8. Spasojevic A., Burdet O., Muttoni A. Applications structurales du beton fiber ultra-hautes performances aux ponts. EPFL, Laboratoire de Construction en beton, 2008, 60 p. Available at: http://ibeton.epfl.ch/Publications/2008/Spasojevic08b.pdf/. Date of access: 22.01.2014.
  9. Tikhonov I.N. Armirovanie elementov monolitnykh zhelezobetonnykh zdaniy : Posobie po proektirovaniyu [Reinforcement of the Elements of Monolithic Reinforced Concrete Buildings]. Moscow, NITs Stroitel'stvo Publ., 2007, 168 p.
  10. Wieczorek M. Influence of Amount and Arrangement of Reinforcement on the Mechanism of Destruction of the Corner Part of a Slab-Column Structure. Prosedia Engineering. 2013, vol. 57, pp. 1260—1268. Available at: http://www.sciencedirect.com/science/article/pii/S1877705813008928. Date of access: 22.02.2014. DOI: http://dx.doi.org/10.1016/j.proeng.2013.04.159.
  11. Vatin N.I., Ivanov A.D. Sopryazhenie kolonny i bezrebristoy beskapitel'noy plity perekrytiya monolitnogo zhelezobetonnogo karkasnogo zdaniya [Connection of a Column and Non-ribbed Capitalless Slab of Monolithic Reinforced Concrete Frame Building]. Saint Petersburg, SPbODZPP Publ., 2006, 82 p. Available at: http://www.engstroy.spb.ru/library/ivanov_kolonna_i_perekrytie.pdf. Date of access: 22.01.2014.
  12. Samokhvalova E.O., Ivanov A.D. Styk kolonny s bezbalochnym beskapitel'nym perekrytiem v monolitnom zdanii [The Joint of a Column and Beamless Capitalless Floor in Monolithic Building]. Inzhenerno-stroitel'nyy zhurnal [Engineering and Construction Journal]. 2009, no. 3. Available at: http://engstroy.spb.ru/index_2009_03/samohvalova_styk.pdf. Date of access: 22.01.2014.
  13. Bezukhov N.I. Osnovy teorii uprugosti, plastichnosti i polzuchesti [Fundamentals of Elasticity and Creep Theory]. 2nd edition, Moscow, Vysshaya shkola Publ., 1968, 512 p.
  14. Altenbach H., Huang C., Naumenko K. Creep-damage Predictions in Thinwalled Structures by Use of Isotropic and Anisotropic Damage Models. The Journal of Strain Analisys for Engineering Design. 2002, vol. 37, no. 3, pp. 265—275. http://dx.doi.org/10.1243/0309324021515023.
  15. Altenbach H., Morachkovsky O., Naumenko K., Sychov A. Geometrically Nonlinear Bending of Thin-walled Shells and Plates under Creep-damage Conditions. Archive of Applied Mechanics. 1997, vol. 67, no. 5, pp. 339—352. DOI: http://dx.doi.org/10.1007/s004190050122.

Cкачать на языке оригинала

Burst strength analysis for a plate of girderless capitelless floor

Вестник МГСУ 10/2014
  • Kremnev Vasiliy Anatol'evich - LLC "InformAviaKoM" Director General, LLC "InformAviaKoM", 2 Pionerskaya str., Korolev, Moscow Region, 141074, Russian Federation; +7 (495) 645-20-62; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Kuznetsov Vitaliy Sergeevich - Mytishchi Branch, Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Architectural and Construction Design, Mytishchi Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospect, Mytishchi, Moscow Region, 141006, Russian Federation; +7 (495) 583-07-65; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Talyzova Yulia Aleksandrovna - Mytishchi Branch, Moscow State University of Civil Engineering (MGSU) Assistant Lecturer, Department of Architectural and Construction Design, Mytishchi Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospect, Mytishchi, Moscow Region, 141006, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 34-40

The paper presents calculations of the punching girderless monolithic slab with transverse reinforcement under the action of a concentrated force in accordance with the applicable regulations. The authors specify the circumstances that may limit the use of the certain sizes of spans of beamless floors. The influence of various factors on ensuring the strength of the joints of columns and ceiling is obserced, such as the class of the concrete slab thickness, the presence of transverse reinforcement. In this paper the calculations of the burst strength were performed for girderless slabs of the thickness 20, 21 , 22, 23, 24 and 25 cm of concrete classes B15, B20, B25, B30 and columns of square section with the side b = 30 cm. The cells of 5 × 5, 6 × 6, 7 × 7, 8 × 8, 9 × 9 m were analized. Bending moments were not taken into account. The utmost bursting effort for various classes of concrete slab thickness and the absence or presence of transverse reinforcement were discovered. The limiting uniformly distributed loads for plates with different grid of columns were calculated. It was found out that in case of the size of the cells up to 5 x 5 m inclusively, you can use all the above concrete classes and slab thicknesss. But in case of the cells of 9 x 9 m and more the use of overlap without capitals is problematic because of the impossibility to ensure the burst strength without special design solutions. Some of contemporary ways to expand the use of overlap without capitals are: the use of high-strength concretes, application of stiff reinforcement in the area of joint of stiff reinforcement, fiber reinforcement and the use of prestressed reinforcement.

DOI: 10.22227/1997-0935.2014.10.34-40

Библиографический список
  1. Pogrebnoy I.O., Kuznetsov V.D. Bezrigel'nyy predvaritel'no napryazhennyy karkas s ploskim perekrytiem [Beamless Prestressed Frame with flat S;ab]. Inzhenerno-stroitel'nyy zhurnal [Civil Engineering Journal]. 2010, no. 3. Pp. 52—55. Available at: http://engstroy.spb.ru/index_2010_03/pogrebnoy_prednapryazheniye.pdf. Date of access: 5.12.2014. (in Russian)
  2. Karpenko N.I. Obshchie modeli mekhaniki zhelezobetona [General Models of Reinforced Concrete Mechanics]. Moscow, Stroyizdat Publ., 1996, 413 p. (in Russian)
  3. Beglov A.D., Sanzharovskiy R.S. Teoriya rascheta zhelezobetonnykh konstruktsiy na prochnost' i ustoychivost'. Sovremennye normy i Evrostandarty [Theory of Strength and Stability Calculation for Reinforced Concrete Structures. Modern Norms and European Standards]. Saint Petersburg, SPbGASU Publ.; Moscow, ASV Publ., 2006, 221 p. (in Russian)
  4. Vol'mir A.S. Gibkie plastinki i obolochki [Flexible Plates and Shells]. Moscow, GITTL Publ. 1956, 420 p. (in Russian)
  5. Miroslaw Wieczorek. Influence of Amount and Arrangement of Reinforcement on the Mechanism of Destruction of the Corner Part of a Slab-Column Structure. Proсedia Engineering. 2013, vol. 57, pp. 1260—1268. Available at: http://www.sciencedirect.com. Date of access: 5.12.2014. DOI: http://dx.doi.org/10.1016/j.proeng.2013.04.159.
  6. Vatin I.N., Ivanov A.D. Sopryazhenie kolonny i bezrebristoy beskapitel'noy plity perekrytiya monolitnogo zhelezobetonnogo karkasnogo zdaniya [Pairing of Columns And Slabs Without Edges And Without Capitals Monolithic In A Reinforced Concrete Frame Building]. Saint Petersburg, 2006, 82 p. Available at: http://www.engstroy.spb.ru/library/ivanov_kolonna_i_perekrytie.pdf. Date of access: 22.01.2014. (in Russian)
  7. Samokhvalova E.O., Ivanov A.D. Styk kolonny s bezbalochnym beskapitel'nym perekrytiem v monolitnom zdanii [Joint of Columns with Beamless Noncap Overlap in a Monolithic Building]. Inzhenerno-stroitel'nyy zhurnal [Civil Engineering Journal]. 2009, no. 3, pp. 33—37. Available at: http://www.engstroy.spb.ru/index_2009_03/samohvalova_styk.pdf. Date of access: 22.01.2014. (in Russian)
  8. Rukovodstvo po proektirovaniyu zhelezobetonnykh konstruktsiy s bezbalochnymi perekrytiyami [Guidelines for the Design of Concrete Structures with Beamless Floors ]. Moscow, Stroyizdat Publ., 1979, 50 p. (in Russian)
  9. Tikhonov I.N. Armirovanie elementov monolitnykh zhelezobetonnykh zdaniy [Reinforcement of the Elements of Monolithic Reinforced Concrete Buildings]. Moscow, NIIZhB im. A.A. Gvozdeva Publ., 2007,168 p. (in Russian)
  10. Bezukhov N.I. Osnovy teorii uprugosti, plastichnosti i polzuchesti [Fundamentals of the Theory of Elasticity and Creep]. Moscow, Vysshaya shkola Publ., 1968, 512 p. (in Russian)
  11. Zenunovica D., Folic R. Models for Behavior Analysis of Monolithic Wall and Precast or Monolithic Floor Slab Connections. Engineering Structures. July 2012, vol. 40, pp. 466—478. Available at: http://www.sciencedirect.com/science/article/pii/S0141029612001241. Date of access: 10.01.2014. DOI: http://dx.doi.org/10.1016/j.engstruct.2012.03.007.
  12. Soudki K., El-Sayed A.K., VanZwolc T. Strengthening of Concrete Slab-Column Connections Using CFRP Strips. Journal of King Saud University — Engineering Sciences. January 2012, vol. 24, no. 1, pp. 25—33. Available at: http://www.sciencedirect.com/science/article/pii/S1018363911000559. Date of access: 10.04.2013.
  13. Paillé J.-M. Eurocode. Calcul des structures en béton. Guide d'application. Paris, Afnor, Eyrolles, octobre 2013, 718 p. Available at: http://www.editions-eyrolles.com/Livre/9782212137330/calcul-des-structures-en-beton. Date of access: 10.01.2014.
  14. Altenbach H., Huang C., Naumenko K. Creep-damage Predictions in Thin-Walled Structures by Use of Isotropic and Anisotropic Damage Models. The journal of Strain Analysis for Engineering Design. 2002, vol. 37, no. 3, pp. 265—275. DOI: http://dx.doi.org/10.1243/0309324021515023.
  15. Altenbach H., Morachkovsky O., Naumenko K., Sychov A. Geometrically Nonlinear Bending of Thin-Walled Shells and Plates under Creep-Damage Conditions. Archive of Applied Mechanics. 1997, vol. 67, no. 5, pp. 339—352. DOI: http://dx.doi.org/10.1007/s004190050122.

Cкачать на языке оригинала

Результаты 1 - 2 из 2