INFLUENCE OF MICROMARBEL GRANULOMETRIC COMPOSITION ON PHYSICAL AND MECHANICAL CHARACTERISTICS OF FILLED EPOXY COMPOSITES

Вестник МГСУ 9/2016
  • Nizina Tat’yana Anatol’evna - National Research Ogarev Mordovia State University (MRSU) advisor, Russian Academy of Architecture and Construction Sciences, Doctor of Technical Sciences, Associate Professor, Department of Building Structures, National Research Ogarev Mordovia State University (MRSU), 24 Sovetskaya str., Saransk, 430005, Russian Federation.
  • Chernov Aleksey Nikolaevich - National Research Ogarev Mordovia State University (MRSU) postgraduate student, Department of Building Structures, National Research Ogarev Mordovia State University (MRSU), 24 Sovetskaya str., Saransk, 430005, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Nizin Dmitriy Rudol’fovich - National Research Ogarev Mordovia State University (MRSU) postgraduate student, Department of Building Structures, National Research Ogarev Mordovia State University (MRSU), 24 Sovetskaya str., Saransk, 430005, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Morozov Mikhail Aleksandrovich - National Research Ogarev Mordovia State University (MRSU) postgraduate student, Department of Building Structures, National Research Ogarev Mordovia State University (MRSU), 24 Sovetskaya str., Saransk, 430005, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Popova Anastasiya Ivanovna - National Research Ogarev Mordovia State University (MRSU) Bachelor student, National Research Ogarev Mordovia State University (MRSU), 24 Sovetskaya str., Saransk, 430005, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 98-107

In the recent years we can evidence the increase in the range of polymer composites used as protective and decorative coatings of building structures. The high resistance to the effects of different aggressive factors results in great potential of polymer materials application, that’s why interest in them continuously increases in many industrial fields. At the present moment multicomponent composite materials based of epoxy binders are widely used. We present the research results of micromarble granulometric composition and the degree of filling influence on the change of physical and mechanical characteristics of polymer composites based on epoxy resins. In the article graphic dependences of the changes of density, ultimate compressive and tensile strength and maximum deflection depending on fractional composition and the mass fraction of the micromarble are shown. We have identified the compositions of filled epoxy composites with the most optimal set of properties. As a result of the conducted investigations we made a conclusion that micromarble is a promising filler for epoxy composites, application of which allows essentially reducing the consumption of polymer binder and obtaining composites which have equal physical and mechanical characteristics to the test unfilled composition.

DOI: 10.22227/1997-0935.2016.9.98-107

Cкачать на языке оригинала

HIGH-QUALITY SELF-COMPACTING CONCRETE WITH COAL BURNING WASTE

Вестник МГСУ 12/2017 Том 12
  • Bazhenov Yuriy Mikhaylovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Head of the Department of Technologies of Cohesive Materials and Concretes, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, 129337, Russian Federation.
  • Voronin Viktor Valerianovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Technologies of Cohesive Materials and Concretes, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, 129337, Russian Federation.
  • Alimov Lev Alekseevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Technologies of Cohesive Materials and Concretes, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, 129337, Russian Federation.
  • Bakhrakh Anton Mikhaylovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Professor of the Department of construction of thermal and nuclear power facilities, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, 129337, Russian Federation.
  • Larsen Oksana Aleksandrovna - Moscow State University of Civil Engineering (National Research University) (MGSU) Bachelor, Department of Technologies of Cohesive Materials and Concretes, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, 129337, Russian Federation.
  • Solov'ev Vitaliy Nikolaevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Professor of the Department of Construction of Thermal and Nuclear Power Facilities, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Nguen Dyk Vin Kuang - Moscow State University of Civil Engineering (National Research University) (MGSU) Postgraduate student, Department of Technologies of Cohesive Materials and Concretes, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, 129337, Russian Federation.

Страницы 1385-1391

Subject: nowadays self-compacting concretes (SCC), the use of which requires no additional compaction, have become widespread for use in densely-reinforced structures and hard-to-reach places. In self-compacting concretes, finely-ground admixtures-microfillers are widely used for controlling technological properties. Their introduction into the concrete mix allows us to obtain more dense structure of concrete. The influence of micro-fillers on water consumption and plasticity of concrete mix, on kinetics of strength gain rate, heat release and corrosion resistance is also noticeable. Research objectives: the work focuses on the development of composition of self-compacting concrete with assigned properties with the use of fly ash based on coal burning waste, optimized with the help of experimental design method in order to clarify the influence of ash and cement quantity, sand size on strength properties. Materials and methods: pure Portland cement CEM I 42.5 N was used as a binder. Crushed granite of fraction 5…20 mm was used as coarse aggregate, coarse quartz sand with the fineness modulus of 2.6 and fine sand with the fineness modulus of 1.4 were used as fillers. A superplasticizer BASF-Master Glenium 115 was used as a plasticizing admixture. The fly ash from Cherepetskaya thermal power plant was used as a filler. The study of strength and technological properties of self-compacting concrete was performed by using standard methods. Results: we obtained three-factor quadratic dependence of strength properties on the content of ash, cement and fraction of fine filler in the mix of fine fillers. Conclusions: introduction of micro-filler admixture based on the fly ash allowed us to obtain a concrete mix with high mobility, fluidity and self-compaction property. The obtained concrete has high strength characteristics, delayed strength gain rate due to replacement of part of the binder with ash. Introduction of the fly ash increases degree of hydration of Portland cement due to the greater water retention capacity, and also contributes to reduction in total capillary porosity of SCC structure.

DOI: 10.22227/1997-0935.2017.12.1385-1391

Cкачать на языке оригинала

INFLAMMABLENESS AND SMOKE-GENERATING ABILITY OF POLYMER COMPOSITE MATERIALS

Вестник МГСУ 8/2017 Том 12
  • Ushkov Valentin Anatolyevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Head of the Research Laboratory of Modern Composite Construction Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Страницы 897-903

Possessing valuable operational properties, the vast majority of polymer composite materials (PCM) tend to ignite and spread the flame, the emergence of dangerous fire factors, leading to loss of life and property damage. The present article is concerned with influence of chemical nature and content of mineral fillers, phosphate plasticizers, bromine-containing fire-retardant agents, and dicyclopentadienyliron (ferrocene) derivatives on thermal fastness, flammability and smoke-generating ability of polymer composite materials. It’s shown that the main parameter defining the influence of mineral fillers on flammability of polymer composite materials is the specific amount of heat absorbed by fillers. It’s proved that bromine-containing fire-retardant agents increase smoke-generating ability of materials and allow obtaining low-flammable polymer composites with smoke-developed index not exceeding 500 m2/kg and high performance factors. The rational use of mineral fillers, bromine-containing fire-retardant agents, and ferrocene derivatives makes it possible to develop PCMs with reduced fire danger and high performance indicators.

DOI: 10.22227/1997-0935.2017.8.897-903

Cкачать на языке оригинала

Optimization of cement composites with the use of fillers from the Chechen Republic fields

Вестник МГСУ 12/2014
  • Balatkhanova Elita Mahmudovna - Ogarev Mordovia State University (MGU im. Ogareva) doctoral candidate, Department of Construction Materials and Technologies, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Erofeev Vladimir Trofimovich - Ogarev Mordovia State University (MGU im. Ogareva) Doctor of Technical Sciences, Professor, Chair, Department of Construction Materials and Technologies, dean, Department of Architecture and Construction, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Bazhenov Yuriy Mikhailovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Chair, Department of Binders and Concrete Technology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 287-49-14, ext. 31-02, 31-03, 31-01; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Mitina Elena Aleksandrovna - Ogarev Mordovia State University (MGU im. Ogareva) Candidate of Technical Sciences, Associate Professor, Department of Highways and Special Engineering Structures, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Rodin Alexander Ivanovich - Ogarev Mordovia State University (MGU im. Ogareva) Candidate of Technical Sciences, Senior Lecturer, Department of Economy and Management in Construction, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Eremin Aleksey Vladimirovich - Moscow State University of Civil Engineering (MGSU) head, laboratory of Physical and Chemical Analysis, Scientific and Research Institute of Construction Materials and Technologies, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Adamtsevich Aleksey Olegovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, head, Principal Regional Center of Collective Use of Scientific Institute of Construction Materials and Technologies, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 656-14-66; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 121-130

The fillers together with binders take part in microstructure formation of matrix basis and contact zones of a composite. The advantage of cement matrix structure with a filler is that inner defects are localized in it - microcracks, macropores and capillary pores, as well as that their quantity, their sizes and stress concentration decrease. Structure formation of filled cement composites is based on the processes taking place in the contact of liquid and stiff phases, which means, it depends on the quantitative relation of the cement, fillers and water, and also dispersivity and physical and chemical activity of the fillers. In the article the authors offer research results of the processes of hydration and physical-mechanical properties of cement composites with fillers from the fields of the Chechen Republic. Research results of heat cement systems are presented, modified by fine fillers. Optimal composition of cement composites filled with powders of quartz, sandstone, river and a mountain limestone of different particle size composition, characterized by a high strength, are obtained.

DOI: 10.22227/1997-0935.2014.12.121-130

Библиографический список
  1. Afanas’ev N.F., Tseluyko M.K. Dobavki v betony i rastvory [Additives in Concrete and Solutions]. Kiev, Budivel’nyk Publ., 1989, 128 p. (In Russian)
  2. Dvorkin L.I., Solomatov V.I., Vyrovoy V.N., Chudnovskiy S.M. Tsementnye betony s mineral’nymi napolnitelyami [Cement Concretes with Mineral Fillers]. Kiev, Budivel’nyk Publ., 1991, 136 p. (In Russian)
  3. Lazarev A.V., Kaznacheev S.V., Erofeeva I.V., Rodina N.G. Vliyanie vida napolnitelya na deformativnost’ epoksidnykh kompozitov v usloviyakh vozdeystviya model’noy bakterial’noy sredy [Infl uence of a Type of a Filler on Deformability of Epoxy Composites in the Conditions of Infl uence of Model Bacterial Environment]. Razrabotka effektivnykh aviatsionnykh, promyshlennykh, elektrotekhnicheskikh i stroitel’nykh materialov i issledovanie ikh dolgovechnosti v usloviyakh vozdeystviya razlichnykh ekspluatatsionnykh faktorov : materialy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii 19—20 dekabrya 2013 g. [Materials of the International Scientific and Technical Conference: Development of Effective Aviation, Industrial, Electrotechnical and Construction Materials and Research of their Durability in the Conditions of the Influence of Various Operational Factors]. Saransk, Mordovia State University Publ., 2013, pp. 188—194. (In Russian)
  4. Panteleev A.S., Kolbasov V.N., Savin E.S. Karbonatnye porody — mikronapolniteli dlya tsementa [Carbonate Breeds — Microfillers for Cement]. Trudy MKhTI im. D.I. Mendeleeva [Works of D. Mendeleyev Institute of Chemical Technology of Moscow]. 1964, no. 45, pp. 19—24. (In Russian)
  5. Solomatov V.I., Takhirov M.K., Takher Shakh Md. Intensivnaya tekhnologiya betona [Intensive Technology of Concrete]. Moscow, Stroyizdat Publ., 1989, 284 p. (In Russian)
  6. Bazhenov Yu.M. Novomu veku — novye betony [New Concretes to the New Age]. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka [Construction Materials, Equipment, Technologies of the 21st Century]. 2000, no. 2 (11), no. 10. (In Russian)
  7. Degtyareva M.M. Tekhnologiya i svoystva betona s binarnym napolnitelem «kvarts — izvestnyak» [Technology and Properties of concrete with Binary Fillers "Quartz-Limestone"]. Theses for the Dissertation of the Candidate of Technical Sciences. Moscow, 1995, 19 p. (In Russian)
  8. Erofeev V.T., Bazhenov Yu.M., Zavalishin E.V., Bogatov A.D., Astashov A.M., Korotaev S.A., Nikitin L.V. Silikatnye i polimersilikatnye kompozity karkasnoy struktury rolikovogo formirovaniya [Silicate and Polymer-Silicate Composites of the Truss Structure of Roller Formation]. Moscow, ASV Publ., 2009, 160 p. (In Russian)
  9. Krasnyy I.M. O mekhanizme povysheniya prochnosti betona pri vvedenii mikronapolnitelya On the Method of Concrete Strength Increase in Case of Microfi ller Introduction]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 1987, no. 5, pp. 10—11. (In Russian)
  10. Ovcharenko F.D., Solomatov V.I., Kazanskiy V.M. O mekhanizme vliyaniya tonkomolotykh dobavok na svoystva tsementnogo kamnya [On the Infl uence Mechanism of Floured Additives on Cement Stone Properties]. Doklady AN SSSR [Reports of Academy of Sciences of the USSR]. 1985, vol. 284, no. 2, pp. 289—403. (In Russian)
  11. Solomatov V.I. Razvitie polistrukturnoy teorii kompozitsionnykh stroitel’nykh materialov [Development of the Polystructural Theory of Composite Construction Materials]. Izvetiya vuzov. Stroitel’stvo i arkhitektura [Proceedings of Institutions of Higher Education. Construction and Architecture]. 1985, no. 8, pp. 58—64. (In Russian)
  12. Basin E.V., editor. Rossiyskaya arkhitekturno-stroitel’naya entsiklopediya. T. 1. Stroyindustriya, stroitel’nye materialy, tekhnologiya i organizatsiya proizvodstva rabot. Stroitel’nye mashiny i oborudovanie [Russian architectural and construction encyclopedia. Vol. 1. Construction Industry, Construction Materials, Technology and Works Management]. Moscow, VNIINTPI Publ., 1995, vol. 1, 495 p. (In Russian)
  13. Adamtsevich A.O., Pustovgar A.P., Eremin A.V., Pashkevich S.A. Vliyanie formiata kal’tsiya na gidratatsiyu tsementa s uchetom fazovogo sostava i temperaturnogo rezhima tverdeniya [Investigation of the Effect of Calcium Formate on Hydration Process of Cement with Account for the Phase Composition and Temperature Mode of Hardening]. Stroitel’nye materialy [Construction Materials]. 2013, no. 7, pp. 59—61. (In Russian)
  14. Makridin N.I., Tarakanov O.V., Maksimova I.N., Surov I.A. Faktor vremeni v formirovanii fazovogo sostava struktury tsementnogo kamnya [Time Factor in Formation of Phase Structure of a Cement Stone]. Regional’naya arkhitektura i stroitel’stvo [Regional architecture and construction]. 2013, no. 2, pp. 26—31. (In Russian)
  15. Barbara Lothenbach, Gwenn Le Saout, Mohsen Ben Haha, Renato Figi, Erich Wieland Hydration of a low-alkali CEM III/B–SiO2 cement (LAC). Cement and Concrete Research. 2012, vol. 42, no. 2, pp. 410—423. DOI: http://dx.doi.org/10.1016/j.cemconres.2011.11.008.
  16. Jansen D., Goetz-Neunhoeffer F., Lothenbach B., Neubauer J. The Early Hydration of Ordinary Portland Cement (OPC): An Approach Comparing Measured Heat Flow with Calculated Heat Flow from QXRD. Cement and Concrete Research, 2012, vol. 42, no. 1, pp. 134—138. DOI: http://dx.doi.org/10.1016/j.cemconres.2011.09.001.
  17. Jeffrey W. Bullard, Hamlin M. Jennings, Richard A. Livingston, Andre Nonat, George W. Scherer, Jeffrey S. Schweitzer, Karen L. Scrivener, Jeffrey J. Thomas Mechanisms of Cement hydration. Cement and Concrete Research. December 2011, vol. 41, no. 12, pp. 1208—1223. DOI: 10.1016/j.cemconres.2010.09.011.
  18. Nguyen Van Tuan, Guang Ye, Klaas van Breugel, Oguzhan Copuroglu. Hydration and Microstructure of Ultra High Performance Concrete Incorporating Rice Husk Ash. Cement and Concrete Research. 2011, vol. 41, no. 11, pp. 1104—1111.
  19. Pashkevich S., Pustovgar A., Adamtsevich A., Eremin A. Pore Structure Formation of Modified Cement Systems, Hardening over the Temperature Range from +22°C to –10°C. Applied Mechanics and Materials. 2014, vols. 584—585, pp. 1659—1664.
  20. Sabine M. Leisinger, Barbara Lothenbach, Gwenn Le Saout, C. Annette Johnson. Thermodynamic Modeling of Solid Solutions Between Monosulfate and Monochromate 3CaO Al2O3 Ca[(CrO4)x(SO4)1-x] nH2O. Cement and Concrete Research. 2012, vol. 42, No. 1, pp. 158—165. DOI: 10.1016/j.cemconres.2011.09.005.

Cкачать на языке оригинала

Physical and mechanical properties of composites based on liquid glass for buildings and structures

Вестник МГСУ 7/2015
  • Markov Sergey Vital’evich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Housing and Utility Complex, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Zavalishin Evgeniy Vasil’evich - Ogarev Mordovia State University Candidate of Technical Sciences, Associate Professor, vice dean, Department of Construction and Architecture, Ogarev Mordovia State University, 68 Bolshevistskaya Str., Saransk, 430005, Republic of Mordovia, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Yunkevich Aleksey Vladimirovich - Research Design-and-engineering and Technological Institute (JC “VNIIzhelezobeton” ) engineer, Research Design-and-engineering and Technological Institute (JC “VNIIzhelezobeton” ), 62 A 2-ya Vladimirskaya str., Moscow, 111141, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 69-78

Composite materials for building structures have certain advantages. In this field Russian scientists got patents for inventions and useful models of new construction materials and structures. Scientific investigations on determining deformation capacity of concretes and building structures of other materials (wood) and their limit states are continuing with account for force and environment impacts and degradation weakening of construction elements. The article presents the study of physical and mechanical properties of composites based on liquid glass, depending on their quantitative and qualitative composition. The properties of the composites based on liquid glass depend on the type, quality of the composites in the material, their durability, correlation of their strength properties, adhesion of binders and filler, etc. In the studied composites different filler content, hardener, as well as modifying additives were used, that improve the properties of materials.

DOI: 10.22227/1997-0935.2015.7.69-78

Библиографический список
  1. Erofeev V.T., Travush V.I., Karpenko N.I., Bazhenov Yu.M., Zhidkin V.F., Rodin A.I., Rimshin V.I., Smirnov V.F., Bogatov A.D., Kaznacheev S.V., Rodina M.A. Patent 2491239 RF, MPK C04B 7/52. Biotsidnyy portlandtsement. Zayavka № 2012107175/03 ; zayavl. 27.02.2012; opubl. 27.08.2013. Byul. № 24 [Russian Patent 2491239 RF, MPK C04B 7/52. Biocide Portland Cement. Notice no. 2012107175/03 ; appl. 27.02.2012; publ. 27.08.2013. Bulletin no. 24]. Patent holder FGBOU VPO “MGU im. N.P. Ogareva”. 4 p. (In Russian)
  2. Erofeev V.T., Rimshin V.I., Bazhenov Yu.M., Travush V.I., Karpenko N.I., Magdeev U.Kh., Zhidkin V.F., Burnaykin N.F., Rodin A.I., Smirnov V.F., Bogatov A.D., Kaznacheev S.V. Patent 2491240 RF, MPK C04B 7/52. Biotsidnyy portlandtsement. Zayavka № 2012107722/03; zayavl. 29.02.2012; opubl. 27.08.2013. Byul. № 24 [Russian Patent 2491240 RF, MPK C04B 7/52. Biocide Portland Cement. Notice no. 2012107722/03; appl. 29.02.2012; publ. 27.08.2013. Bulletin no. 24]. Patent holder FGBOU VPO “MGU im. N.P. Ogareva”. 4 p. (In Russian)
  3. Erofeev V.T., Rimshin V.I., Bazhenov Yu.M., Magdeev U.Kh., Zhidkin V.F., Burnaykin N.F.,Rodin A.I., Bogatov A.D., Kaznacheev S.V., Rodina M.A. Patent 2496729 RF, MPK C04B. Portlandtsement. Zayavka № 2012107720 ; zayavl. 29.02.2012 ; opubl. 27.10.2013 [Russian Patent 2496729 RF, MPK C04B. Portland Cement. Notice no. 2012107720 ; appl. 29.02.2012 ;publ. 27.10.2013]. Bank patentov [Bank of Patents]. Patent holder FGBOU VPO “MGU im. N.P. Ogareva”. Available at: http://bankpatentov.ru/node/426361. Date of access: 15.05.2015. (In Russian)
  4. Erofeev V.T., Bazhenov Yu.M., Magdeev U.Kh., Zhidkin V.F., Rodin A.I., Rimshin V.I.,Bogatov A.D., Burnaykin N.F., Kaznacheev S.V., Rodina M.A. Patent 2496728 RF, MPK C04B. Portlandtsement. Zayavka № 2012107174 ; zayavl. 27.02.2012 ; opubl. 27.10.2013 [Russian Patent no. 2496728 RF, MPK C04B. Portland Cement. Notice no. 2012107174 ; appl. 27.02.2012 ; publ. 27.10.2013]. Bank patentov [Bank of Patents]. Patent holder FGBOU VPO “MGU im. N.P. Ogareva”. Available at: http://bankpatentov.ru/node/426360. Date of access: 15.05.2015. (In Russian)
  5. Anpilov S.M., Gaynulin M.M., Eryshev V.A., Murashkin V.G., Murashkin G.V., Anpilov M.S., Rimshin V.I., Sorochaykin A.N. Patent RF na poleznuyu model’ 147740. Nes”emnaya stenovaya opalubka. Opubl. 08.07.2014 [Russian Useful Model Patent 147740. Permanent Wall Form. Publ. 08.07.2014]. Poleznaya model’.ru [Useful Model.ru]. Available at: http://poleznayamodel.ru/model/14/147740.html/. Date of access: 15.05.2015. (In Russian)
  6. Anpilov S.M., Eryshev V.A., Gaynulin M.M., Murashkin V.G., Murashkin G.V., Anpilov M.S., Rimshin V.I., Sorochaykin A.N. Patent RF na poleznuyu model’ 147452. Sbornyy stroitel’nyy element : referat. Opubl. 08.07.2014 [Russian Useful Model Patent 147452. Ready-made Building Element : Report. Publ. 08.07.2014]. Poleznaya model’.ru [Useful Model.ru]. Available at: http://poleznayamodel.ru/model/14/147452.html/. Date of access: 15.05.2015. (In Russian)
  7. Bondarenko V.M., Rimshin V.I. Kvazilineynye uravneniya silovogo soprotivleniya i diagramma σ−ε betona [Quasilinear Equations of Force Resistance and Diagram of σ−ε Concrete]. Stroitel’naya mekhanika inzhenernykh konstruktsiy i sooruzheniy [Structural Mechanics of Engineering Structures and Constructions]. 2014, no. 6, pp. 40—44. (In Russian)
  8. Bondarenko V.M., Kurzanov A.M., Rimshin V.I. Mekhanizm seysmicheskikh razrusheniy zdaniy [Mechanism of Seismic Destruction of Buildings]. Vestnik Rossiyskoy akademii nauk [Bulletin of the Russian Academy of Sciences]. 2000, vol. 70, no. 11, pp. 1005—1009. (In Russian)
  9. Bondarenko V.M., Rimshin V.I. Ostatochnyy resurs silovogo soprotivleniya povrezhdennogo zhelezobetona [Residual Life of Force Resistance of Damaged Reinforced Concrete]. Vestnik otdeleniya stroitel’nykh nauk Rossiyskoy akademii arkhitektury i stroitel’nykh nauk [Bulletin of the Department of Construction Sciences of the Russian Academy of Architecture and Construction Sciences]. 2005, no. 9, pp. 119—126. (In Russian)
  10. Krishan A.L., Astaf’eva M.A., Narkevich M.Yu., Rimshin V.I. Opredelenie deformatsionnykh kharakteristik betona [Definition of the Deformation Properties of Concrete]. Estestvennye i tekhnicheskie nauki [Natural and Technical Sciences]. 2014, no. 9—10 (77), pp. 367—369. (In Russian)
  11. Krishan A.L., Astaf’eva M.A., Rimshin V.I. Predel’nye otnositel’nye deformatsii tsentral’no-szhatykh zhelezobetonnykh elementov [Limit Relative Deformations of Axially Loaded Reinforced Concrete Elements]. Estestvennye i tekhnicheskie nauki [Natural and Technical Sciences]. 2014, no. 9—10 (77), pp. 370—372. (In Russian)
  12. Kurbatov V.L., Rimshin V.I. Prakticheskoe posobie inzhenera-stroitelya [Practical Guide of Civil Enineer]. Moscow, Student Publ., 2012, 743 p. (In Russian)
  13. Larionov E.A., Rimshin V.I., Vasil’kova N.T. Energeticheskiy metod otsenki ustoychivosti szhatykh zhelezobetonnykh elementov [Energy Method of Estimating the Resistance of Compressed Reinforced Concrete Elements]. Stroitel’naya mekhanika inzhenernykh konstruktsiy i sooruzheniy [Structural Mechanics of Engineering Constructions and Buildings]. 2012, no. 2, pp. a77—81. (In Russian)
  14. Roshchina S.I., Rimshin V.I. Raschet deformatsiy izgibaemykh armirovannykh derevyannykh elementov s uchetom polzuchesti [Deformation Calculation of Bendable Reinforced Wooden Elements woth Account for Creep]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta [News of Southwest State University]. 2011, no. 1 (34), pp. 121—124. (In Russian)
  15. Rimshin V.I., Bikbov R.Kh., Kustikova Yu.O. Nekotorye elementy usileniya stroitel’nykh konstruktsiy kompozitnymi materialami [Some Elements of Building Structures Reinforcement with Composite Materials]. Vestnik BelGTU [Bulletin of BSTU named after V.G. Shukhov]. 2005, no. 10, pp. 381—383. (In Russian)
  16. Rimshin V.I., Kustikova Yu.O. Fenomenologicheskie issledovaniya velichiny stsepleniya bazal’toplastikovoy armatury s betonom [Phenomenological Analysis of Linkage Value of Basalt-Plastic Reinforcement with Concrete]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii [News of Southwest State University. Series: Equipment and Technologies]. 2011, no. 1, pp. 27—31. (In Russian)
  17. Rimshin V.I., Kustikova Yu.O. Mekhanika deformirovaniya i razrusheniya usilennykh zhelezobetonnykh konstruktsiy [Mechanics of Deformation and Destruction of Reinforced Concrete Structures]. Izvestiya Orlovskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Stroitel’stvo i transport [News of Orlov State Technical University. Series: Construction and Transport]. 2007, no. 3/15 (537), pp. 53—56. (In Russian)
  18. VSN 53-86(r). Pravilo otsenki fizicheskogo iznosa zhilykh zdaniy [Construction Norms VSN 53-86(r). Rules of Estimating the Physical Wear of Residential Buildings]. Moscow, Gosgrazhdanstroy Publ., 1988, 50 p. (In Russian)
  19. Rimshin V.I., Shubin L.I., Savko A.V. Resurs silovogo soprotivleniya zhelezobetonnykh konstruktsiy inzhenernykh sooruzheniy [Life of Force Resistance of Reinforced Concrete Structures of Engineering Constructions]. Academia. Arkhitektura i stroitel’stvo [Academia. Architecture and Construction]. 2009, no. 5, pp. 483—491. (In Russian)
  20. Rimshin V.I., Galubka A.I., Sinyutin A.V. Inzhenernyy metod rascheta usileniya zhelezobetonnykh plit pokrytiya kompozitnoy armaturoy [Engineering Calculation Method of Concrete Slab Reinforcement by Composite Reinforcement]. Nauchno-tekhnicheskiy vestnik Povolzh’ya [Scientific and Technical Volga region Bulletin]. 2014, no. 3, pp. 218—220. (In Russian)
  21. Telichenko V.I., Rimshin V.I. Kriticheskie tekhnologii v stroitel’stve [Critical Technologies in Construction]. Vestnik Otdeleniya stroitel’nykh nauk RAASN [Bulletin of the Department of Construction Sciences of the Russian Academy of Architecture and Construction Sciences]. 1998, no. 4, pp. 16—18. (In Russian)
  22. Erofeev V.T., Bazhenov Yu.M., Zavalishin E.V., Bogatov A.D., Astashov A.M., Korotaev S.A., Nikitin L.V. Silikatnye i polimersilikatnye kompozity karkasnoy struktury rolikovogo formovaniya [Silicate and Polymer-silicate Composites of the Frame Structure of Roller Forming]. Moscow, ASV Publ., 2009, 160 p. (In Russian)
  23. Zavalishin E.V. Biologicheskoe soprotivlenie kompozitov na osnove zhidkogo stekla : avtoreferat dissrtatsii … kandidata tekhnicheskikh nauk [Biological Resistance of the Composites Based on Liquid Glass : Author’s Thesis of Candidate of Technical Sciences]. Penza, 2002, 18 p. (In Russian)
  24. Zavalishin E.V., Erofeev V.T., Smirnov V.F. Biologicheskoe soprotivlenie kompozitov na osnove zhidkogo stekla [Biological Resistance of the Composites Based on Liquid Glass ].Biopovrezhdeniya i biokorroziya v stroitel’stve : materialy II Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Biodeteriorations and Biocorrosion in Construction : Materials of the 2nd International Science and Technical Conference]. Saransk, 2004, pp. 156—159. (In Russian)
  25. Perlin S.M., Makarov V.G. Khimicheskoe soprotivlenie stekloplastikov [Chemical Resistance of Fiberglass]. Moscow, Khimiya Publ., 1983, 184 p. (In Russian)
  26. Khrulev V.M. Polimersilikatnye kompozitsii v stroitel’stve [Polymer-silicate Compositions in Constrution]. Ufa, TAU Publ., 2002, 76 p. (In Russian)
  27. Rimshin V.I., Larionov E.A., Erofeyev V.T., Kurbatov V.L. Vibrocreep of Concrete with a Nonuniform Stress State. Life Science Journal. 2014, vol. 11, no. 11, pp. 278—280.
  28. Awaya H., Kajiyama H., Oda N. Suppression of the Corrosive Properties of Calcium Chloride. Japan. 78, 13179. May 08.78; Chem Abstr., 89, 116866.
  29. Christophliemk P. Herstellung, Struktur und Chemietechnisch wichtiger Alkalisilicate. Glastechnische Berichte. 1985, vol. 58, no. 11, pp. 308–—314.
  30. Csutor J. Gravitacios betonsöverk guartasa hendelessel. Epitöanyag. 1973, no. 11, pp. 423—431.
  31. Friedemann W. Anwendungsvielfalt des Rohstoffes Wasserglas. Glastechnische Berichte. 1985, vol. 58, no. 11, pp. 315—319.
  32. Vail J.G. Soluble Silicates (ACS Monograph Series). Reinhold, New York, 1952, vol. 1, pp. 158; Vol. 2, p. 549.
  33. Weldes H.H., Lange K.R. Properties of Soluble Silicates. Ind. Eng. Chem. 1969, vol. 61, no. 4, pp. 29—44. DOI: http://dx.doi.org/10.1021/ie50712a008.
  34. Williamson G., Glasser F.P. The Crystallization of Na2O∙2SiO2. Phys. Chem. Glasses. 1966, vol. 7, no. 4, pp. 127—128.

Скачать статью

TECHNICAL-ECONOMIC EFFICIENCY OF THE USE OF NANOMODIFIED FILLER FOR ASPHALT-CONCRETE

Вестник МГСУ 4/2018 Том 13
  • Inozemtsev Sergey Sergeevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Junior Researcher, “Nanomaterials and Nanotechnologies” Research and Education Center, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Korolev Evgeniy Valer’evich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Director of the “Nanomaterials and Nanotechnologies” Research and Education Center, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 536-443

Subject: technical and economic efficiency of the use of nanomodified porous mineral powder in the composition of asphalt-concrete mixture. The system of quality indicators of crushed stone-mastic asphalt-concretes obtained using nanomodified porous filler is presented. A general criterion for the quality of asphaltic concrete and a method for assessing the technical and economic efficiency of the use of nanomodified filler to control the properties of asphalt-concrete have been developed. Using the methods of system analysis, decomposition of the asphalt-concrete quality system was carried out and the basic quality indicators and dependencies for calculation of particular quality criteria were identified. The efficiency of using a filler based on a porous mineral material whose surface is modified with an additive based on iron hydroxide sol and silicic acid is shown. Research objectives: substantiation of effectiveness of the use of nanomodified porous mineral powder in the composition of asphalt-concrete mixture, taking into account the efficiency and cost criteria. Materials and methods: oil road bitumen BND 60/90, gabbro-diabase crushed stone of 5-20 mm fraction, granite crushing and screening products, stabilizing additive Viatop-66 and nanomodified diatomite were used. Samples of crushed stone-mastic asphalt-concrete were tested in accordance with the standard methods, and resistance to varying weather and climatic conditions and also rutting resistance were studied. Results: the proposed criteria allow one to estimate the effectiveness of the use of nanomodified mineral powder in asphalt-concrete, taking into account both the technical characteristics of the asphalt-concrete, obtained by using the powder, and the economic costs necessary to achieve improvement in quality indices. Concrete SMA-20, in which 100 % of the traditional filler is replaced by a powder based on diatomite, modified with iron (III) hydroxide sol and silicic acid, has a 28 % higher technical and economic efficiency compared to traditional crushed stone-mastic asphalt-concrete. This is achieved by significantly improving the quality of the material compared to the necessary ones. Conclusions: the use of the powder based on diatomite, modified with the iron (III) hydroxide sol, and silicic acid as a filler in the composition of asphalt-concrete mixture makes it possible to increase the asphalt-concrete efficiency index by 35 %. The increase in technical and economic efficiency by 28 % justifies application of the modified filler.

DOI: 10.22227/1997-0935.2018.4.536-543

Cкачать на языке оригинала

Результаты 1 - 6 из 6