The reaction of the building structure with window unit to the explosiveimpact on the basis of dynamic equation solution

Вестник МГСУ 1/2014
  • Doronin Fedor Leonidovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Hydraulics and Water Resources, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, 129337, Moscow, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Truchanova Lyudmila Nikolaevna - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Pro- fessor, Department of Physics, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, 129337, Moscow, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Fomina Marina Vasilyevna - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Physics, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, 129337, Moscow, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 33-40

When designing residential buildings, additional measures for increasing the strength at dynamic effects indoors are not foreseen. The walls of the structure fixed in the framework are not designed for shock wave caused by explosion of utility gas. When designing a building, the task of the special dynamic load is often reduced to the calculation of the safe shock pressure, exceeding of which leads to the destruction of the structures. The wall with the window area under dynamic effects is a blast relief panel, which reduces the excess pressure inside the room. The proposed method of calculating a design with a window unit allows determining the dynamic reaction of the wall on explosive pulse. The proposed calculation technique of the constructions at shock loads allows tracing the changes of the inertial forces and displacements at any stage of dynamic response. The reaction to dynamic loads can be also set for non-monolithic structures, consisting of different materials with different conditions of fastening. Elastoplastic reaction of a brick wall with glass units was determined using step-by-step method of linear acceleration. The calculation of stress-strain state of brick walls with window panes determined the strength properties of the structures close to the monolithic version. The proposed technique of numerical solution of dynamic equations is applied only in the analysis of elastic systems, in which the dynamic characteristics remain unchanged throughout the reaction process.

DOI: 10.22227/1997-0935.2014.1.33-40

Библиографический список
  1. Abrosimov A.A., Komarov A.A. Meropriyatiya, obespechivayushchie bezopasnye nagruzki pri avariynykh vzryvakh v zdaniyakh so vzryvoopasnymi tekhnologiyami [Measures Providing Proof Loads at Accidental Explosions in the Buildings with Explosion Hazardous Technologies]. Seysmostoykoe stroitel'stvo. Bezopasnost' sooruzheniy [Antiseismic Construction. Security of Structures]. 2002, no. 4, pp. 48—51.
  2. Komarov A.A. Razrushenie zdaniy pri avariynykh vzryvakh bytovogo gaza [Destruction of Buildings Subject to Accidental Explosions of the Utility Gas]. Pozharobezopasnost [Fire Safety]. 2004, vol. 13, no. 5, pp. 15—23.
  3. Pilyugin L.P. Obespechenie vzryvoustoychivosti zdaniy s pomoshch'yu predokhranitel'nykh konstruktsiy [Ensuring Blast Resistance of Buildings with the Help of Protecting Structures]. Moscow, Pozhnauka Publ., 2000, 224 p.
  4. Mishuev A.V., Komarov A.A., Khusnutdinov D.Z. Obshchie zakonomernosti razvitiya avariynykh vzryvov i metody snizheniya vzryvnykh nagruzok do bezopasnogo urovnya [Common Patterns of Accidental Explosions Development and Methods of Reducing Explosive Loads up to the Safe Level]. Pozharobezopasnost [Fire Safety]. 2001, vol. 10, no. 6, pp. 8—19.
  5. Komarov A.A. Analiz posledstviy avariynogo vzryva prirodnogo gaza v zhilom dome [The Analysis of the Consequences of Natural Gas Explosions in Residential Building]. Pozharobezopasnost [Fire Safety]. 1999, vol. 8, no. 4, pp. 49—53.
  6. Newmark N.M., Rosenblueth E. Fundamentals of Earthquake Engineering. Prentice-Hall, Inc. Englewood Cliffs, New York, 1971, 344 p.
  7. Ambriashvili Yu.K., Anan'in A.I., Barchenkov A.G. and others. Spravochnik proektirovshchika. Dinamicheskiy raschet spetsial'nykh inzhenernykh sooruzheniy i konstruktsiy [Designer's Guidance. Dynamic Calculation of Special Engineering Structures and Constructions]. Moscow, Stroyizdat Publ., 1986, 462 p.
  8. Clough R.W., Penzien J. Dynamics of Structures. World Book Company, New York, 1977, 320 p.
  9. Korn G.A., Korn T.M. Mathematical Handbook for Scientists and Engineers. Second Edition. Dover, New York, 2000, 943 p.
  10. Doronin F.L., Lyapin A.Yu. Raschet konstruktsiy sooruzheniy na vzryvnuyu nagruzku na osnove chislennogo resheniya uravneniya dvizheniya [Calculation of Building Structures for the Explosive Load Basing on Numerical Solutions of Motion Equation]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 4, pp. 72—78.

Cкачать на языке оригинала


Вестник МГСУ 8/2012
  • Khodzhiboev Abduaziz Abdusattorovich - Tajik Technical University named after academic M.S. Osimi Candidate of Technical Sciences, Associated Professor, Chair, Department of Structural Mechanics and Seismic Resistance of Structures, +7 (992) 918-89-35-14, Tajik Technical University named after academic M.S. Osimi, 10 Akademikov Radzhabovyh St., Dushanbe, 734042, Republic of Tajikistan; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 121 - 124

The subject of the research is the concentration of stresses in a plate that has two side
recesses, if the plate is exposed to the pre-set surface stress. Boundary integral equations are
derived on the basis of the reciprocity theorem. The fundamental Kelvin solution is used to define
the displacement area in the finite isotropic elastic plane. The mathematical model and the solution
algorithm, both developed by the author, represent a numerical solution designated for the plate
that has two side recesses. Comparison of results with well-known solutions demonstrates their
good convergence. The author has discovered that the smaller the radius of the recess, the higher
the stress concentration

DOI: 10.22227/1997-0935.2012.8.121 - 124

Библиографический список
  1. Novatskiy V. Teoriya uprugosti [Theory of Elasticity]. Moscow, Mir Publ., 1975, 872 p.
  2. Nizomov D.N. Metod granichnykh uravneniy v reshenii staticheskikh i dinamicheskikh zadach stroitel’noy mekhaniki [Method of Boundary Equations Employed to Solve Static and Dynamic Problems of Structural Mechanics]. Moscow, ASV Publ., 2000, 282 p.
  3. Brebbiya K., Telles Zh., Vroubel L. Metody granichnykh elementov [Methods of Boundary Elements]. Moscow, Mir Publ., 1987, 524 p.
  4. Mavlyutov R.R. Kontsentratsiya napryazheniy v elementakh aviatsionnykh konstruktsiy [Concentration of Stresses in Elements of Aircraft Structures]. Moscow, Nauka Publ., 1981, 141 p.

Cкачать на языке оригинала

Research of stress-strain state and stability of a rokfill dam under seismic actions

Вестник МГСУ 11/2015
  • Orekhov Vyacheslav Valentinovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, chief research worker, Scientific and Technical Center “Examination, Design, Inspection”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 157-166

One of the main factors determining the safety of earth sea and river hydraulic structures erected on water-saturated grounds is the process of consolidation, manifested under the action of static and seismic loads. A feature of cohesionless soils located in the structure itself or in its base, is their potential ability to liquefaction under seismic impacts. This paper describes the method of calculating the saturated soil’s environments under seismic actions based on the numerical solution of differential equations of the theory of consolidation by finite element method. The results of the static problem solving for the phased construction of the installation are used as the initial conditions. In order to describe the deformability of soil materials mathematical model formed by the theory of plastic flow with hardening is used. The parameters of this model are determined by the results of triaxial testing of soils. As an example, we study the interaction of a sea rockfill dam with a sandy base under seismic impacts, determined by the synthetic accelerograms. The results of calculations of the stress-strain state of the two sections of the dam (shallow and deep) are presented, and assessment is made of the possibility of liquefaction of sandy soil base. It is shown that the pore pressure that occurs in water-saturated cohesionless soil base and the body of the dam under seismic impacts, unloads the soil skeleton, which leads to a decrease in local shear safety factors. And, in the less dense soil base of the shallow section of the dam, the soil skeleton is unloaded to a greater extent, which negatively affects its overall safety factor.

DOI: 10.22227/1997-0935.2015.11.157-166

Библиографический список
  1. Belkova I.N., Glagovskiy V.B., Gol’din A.L., Lipovetskaya T.F. Konsolidatsiya osnovaniya i osadki damby D-3 kompleksa zashchitnykh sooruzheniy ot navodneniy Sankt-Peterburga [Consolidation of the Basе and Settlements of the Dam D-3 of Flood Protection Barrier Complex of St. Petersburg]. Izvestiya VNIIG im. B.E. Vedeneeva [Proceedings of B.E. Vedeneev VNIIG]. 2003, vol. 242. Osnovaniya i gruntovye sooruzheniya [Bases and Soil Foundations]. Pp. 60—67. (In Russian)
  2. Bugrov A.K., Golli A.V., Kagan A.A., Kuraev S.N., Pirogov I.A., Shashkin A.G. Naturnye issledovaniya napryazhenno-deformirovannogo sostoyaniya i konsolidatsii osnovaniy sooruzheniy kompleksa zashchity Sankt-Peterburga ot navodneniy [Field Studies of Stress-Strain State and Consolidation of Structures Foundations of Flood Protection Complex of Saint Petersburg]. Osnovaniya, fundamenty i mekhanika gruntov [Soil Mechanics and Foundation Engineering]. 1997, no. 1, pp. 2—9. (In Russian)
  3. Li Sa, Li Jingmei, Yang Jinliang. Liquefaction Analysis of the Foundation of Erwangzhuang Reservoir Dam in Tianjin. Proc. of the 4th Int. Conf. on Dam Engineering. Nanjing. A.A. Balkema. 2004, pp. 477—483.
  4. Zaretskiy Yu.K., Orekhov V.V. Seysmostoykost’ gruntovykh plotin [Seismic Stability of Earth Dams]. Sbornik nauchnykh trudov Gidroproekta [Collection of the Scientific Papers of Hydroproject]. Moscow, 2000, no. 159, pp. 361—372. (In Russian)
  5. Seed H.B., Lee K.L., Idriss I.M., Makadisi F.I. The Slides in the San Fernando Dams during the Earthquake of February 9, 1971. ASCE. J. of the Geotechnical Engineering Division. 1975, vol. 101, no. 7, pp. 651—688.
  6. Olson S.M., Stark T.D. Yield Strength Ratio and Liquefaction Analysis of Slopes and Embankments. Journal of Geotechnical and Geoenvironmental Engineering. 2003, vol. 129, no. 8, pp. 727—737. DOI:
  7. Seid-Karbasi M., Atukorala U. Deformations of a Zoned Rockfill Dam from a Liquefiable Thin Foundation Layer Subjected to Earthquake Shaking. 21st Century Dam Design —Advances and Adaptations. 31st Annual USSD Conference San Diego. California. April 11—15, 2011, pp. 1351—1367.
  8. Ohmachi T., Kohayakawa M. Missing Water at the Aratozawa Dam due to the Iwate-Miyagi Nairiku Earthquake in 2008. Proc. of the Int. Symp. on Dams for a Changing World — 80th Annual Meet. and 24th Cong. of ICOLD. Kyoto. Japan. 2012, pp. (6) 59—64.
  9. Casagrande A. Liquefaction and Cyclic Deformation of Sands. A Critical Review. Proceedings of the Fifth Panamerican Conference on Soil Mechanics und Foundation Engineering. Buenos Aires. Harvard Soil Mechanics Series. 1976, no. 88, 27 p.
  10. Seed H.B., Idriss I.M. Simplified Procedures for Evaluation Soil Liquefaction Potential. Journal of Soil Mechanics and Foundation Engineering. ASCE. Vol. 97, no. 9, pp. 1249—1273.
  11. Maslov N.N. Osnovy inzhenernoy geologii i mekhaniki gruntov [Fundamentals of Engineering Geology and Soil Mechanics]. Moscow, Vysshaya shkola Publ., 1982, 512 p. (In Russian)
  12. Seed H.B., Lee K.L. Liquefaction of Saturated Sands during Cyclic Loading. Journal of ASCE. 1996, vol. 92, no. 6, pp. 105—134.
  13. Kenji Ishihara. Soil Behavior in Earthquake Geotechnics. Clarendon Press. Oxford, 1996, 340 p.
  14. Youd T.L., Idriss I.M., Andrus R.D., Arango I., Castro G., Christian J.T., Dobry R., Finn W.D.L., Harder L.F., Hynes M.E., Ishihara K., Koester J.P., Liao S.S.C., Marcuson W.F., Martin G.R., Mitchell J.K., Moriwaki Y., Power M.S., Robertson P.K., Seed H.B., Stokoe K.H. Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering. 2001, 127 (10), pp. 817—833. DOI:
  15. Orekhov V.V. Ob''emnaya matematicheskaya model’ i rezul’taty raschetnykh issledovaniy napryazhenno-deformirovannogo sostoyaniya osnovnykh sooruzheniy Rogunskoy GES [Volume Mathematical Model and the Results of Numerical Studies of the Stress-strain State of the Main Structures of the Rogun HPP]. Gidrotekhnicheskoe stroitel’stvo [Hydrotechnical Construction]. 2011, no. 4, pp. 12—19. (In Russian)
  16. Orekhov V.V. Raschet vzaimodeystviya sooruzheniy i vodonasyshchennykh gruntovykh osnovaniy pri staticheskikh i seysmicheskikh vozdeystviyakh [Calculation of the Interaction of Constructions and Water-Saturated Soil Foundations under Static and Seismic Loads]. Osnovaniya, fundamenty i mekhanika gruntov [Soil Mechanics and Foundation Engineering]. 2015, no. 2, pp. 8—12. (In Russian)
  17. Biot M.A. Theory of Propagation of Elastic Waves in Fluid Saturated Porous Solid. J. Acoust. Soc. of America. 1956, vol. 28, no. 1, pp. 168—179.
  18. Zaretskiy Yu.K., Lombardo V.N. Statika i Dinamika Gruntovykh Plotin [Statics and Dynamics of Earth Dams]. Moscow, Energoatomizdat Publ., 1983, 255 p.
  19. Zaretskiy Yu.K., Korchevskiy V.F. Zheleznodorozhnyy perekhod s materika na o. Sakhalin cherez proliv Nevel’skogo — Variant s glukhoy damboy i sudokhodnym kanalom [Railroad Crossing from the Mainland to Sakhalin Island across the Strait Nevelsky — Option with Deaf Dam and Navigation Channels]. Gidrotekhnicheskoe stroitel’stvo [Hydrotechnical Construction]. 2008, no. 4, pp. 42—49. (In Russian)
  20. Orekhov V.V. Kompleks vychislitel’nykh programm «Zemlya-89» [Computing Programs Complex “Earth-89”]. Issledovaniya i razrabotki po komp’yuternomu proektirovaniyu fundamentov i osnovaniy : mezhvuzovskiy sbornik [Interuniversity Collection “Research and Development in Computer-aided Design of Foundations and Bases”]. Novocherkassk, 1990, pp. 14—20. (In Russian)

Скачать статью

Результаты 1 - 3 из 3